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Abstract

We study the evolution of risk premiums on US Treasury bonds from the perspective of

a real-time Bayesian learner RA who updates her beliefs using a dynamic term structure

model. Learning about the historical dynamics of yields led to substantial variation in

RA’s subjective risk premiums. Moreover, she gained substantial forecasting power by

conditioning her learning on measures of disagreement among professional forecasters

about future yields. This gain was distinct from the (much weaker) forecasting power of

macroeconomic information. RA’s views about the pricing distribution of yields remained

nearly constant over time. Her learning rule outperformed consensus forecasts of market

professionals, particularly following U.S. recessions.
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1 Introduction

Market participants trading US treasury bonds need to form prospective views in real-time

on bond expected returns, while facing structural changes in the economy (e. g. in policy,

regulatory or political environments). However, most of the literature that studies risk

compensation in bond markets uses retrospective within-sample measures of risk premiums,1

and mostly relies on the assumption that the parameters governing the evolution of the risk

factors in the economy are fixed and known by market participants.

In this paper we instead take the perspective of an agent RA who is forming beliefs in

real-time about the distribution of future bond yields. RA is modeled as a Bayesian learner

who forms beliefs about the parameters governing the dynamics of the key factors driving

future excess returns, while taking account of possible structural changes in these parameter.

We document that real-time learning materially changes estimates of bond risk premiums,

relative to those based on retrospective full-sample estimates, and we explore the nature of

the conditioning information that lends precision to RA’s learning rule.

The yield curve is a high-dimensional object, and restrictions based on the cross section

of bond yields have proven to be crucial in generating accurate estimates of risk premiums.

Accordingly, Bayesian learning is explored within a dynamic term structure model (DTSM)

in which the priced risks are the first three principal components (PCs or P) of bond yields.

Specifically, RA prices P-sensitive payoffs using a stochastic discount factor (SDF) that

reflects learning within a conditionally Gaussian framework, under the presumption that her

conditioning information is informative about future yields.

Initially, RA’s conditioning information is set equal to the history of the priced risks P.

This benchmark case is premised on investors recognizing that the yield portfolios P are

effective predictors of future bond returns.2 A striking empirical finding that emerges from

this benchmark is that RA effectively knows the risk-neutral (Q) drift of the PC’s of bond

yields and treats its parameters as virtually constant over time within her real-time Bayesian

learning scheme. We show formally that, within our restricted arbitrage-free DTSM, this

implies that RA’s learning rule simplifies to a version of constant-gain learning.

As a reference point for RA’s expected excess returns, we use the consensus beliefs

among professional forecasters from the Blue-Chip Financial Forecasters (BCFF) panel,

which is a unique survey run monthly among professional forecasters at financial and non-

financial institutions. The forecasters included in the survey provide their forecasts for key

macroeconomic variables and a wide cross-section of bond yields. Notably, RA’s real-time

learning rule conditioned only on P gives substantially smaller out-of-sample RMSEs across

1See, for examples, Duffee (2002), Ludvigson and Ng (2010), and Joslin, Priebsch, and Singleton (2014).
2See Cochrane and Piazzesi (2002), Cochrane and Piazzesi (2008) and Joslin, Singleton, and Zhu (2011).
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the entire yield curve, relative to BCFF forecasts, particularly for long-maturity bonds.

Not only does RA disagree with the BCFF consensus about the future path of bond yields,

but there is substantial disagreement within the BCFF panel of forecasters.3 Once investor

disagreement is “aggregated” in bond markets, it might well affect the distribution of bond

prices through investors’ stochastic discount factors. To explore this possibility empirically,

we extend RA’s conditioning information set to include measures of disagreement on expected

future bond yields based on the BCFF data (hereafter Ht). Learning rules conditioned on the

joint history of yield information and forecaster disagreement (Pt, Ht) do indeed give more

accurate real-time forecasts of yields than those conditioned on P alone.

Accommodating learning conditioned on disagreement materially affects measured risk

premiums. Moreover, RA’s constant-gain (Bayesian) learning rule gives systematically more

accurate real-time forecasts (lower RMSE’s) than the consensus BCFF forecasts and forecasts

from random-walk models for individual yields. The outperformance with respect to BCFF is

particularly evident following NBER recessions,4 when the median BCFF forecaster repeatedly

predicted that long-bond yields would rise much faster than they actually rose.

There are two potential sources of the forecasting power of disagreement in RA’s learning

rule: (i) a direct effect on future PC’s through the law of motion of the state vector (Pt, Ht),

and (ii) an indirect effect through Bayesian updates of the parameters governing the covariances

of the current PC’s with their future values. We show that the indirect effects are the dominant

ones, and they are especially large following NBER recessions. When the U.S. economy is

emerging from a recession, knowledge of the extent of disagreement among professionals is

informative about how today’s yield curve will impact its future shape.

Might the predictive power of Ht in RA’s learning rule arise because yield disagreement

is proxying for other macro factors? We find that the forecasting power of Ht is distinct

from that of inflation, output growth, or aggregate productivity. Nor is the predictive power

of Ht spanned by forward looking expectations of inflation and output, or by disagreement

about future macro conditions computed from BCFF data.5 In fact, within our learning rules,

introducing macro factors or beliefs about these factors has only weak real-time predictive

power for future yields, whereas conditioning on yield disagreement substantially lowers

out-of-sample mean-squared forecast errors.

Our analysis of learning in bond markets complements several related studies. There

3For complementary evidence on how disagreement among market professionals about macroeconomic
conditions impacts the future paths of bond yields, see, for examples, Dovern, Fritsche, and Slacalek (2012)
and Andrade, Crump, Eusepi, and Moench (2014).

4Cieslak (2017) explores in depth the properties of consensus professional forecasts of the federal funds rate
and finds that these short-rate expectations are similarly inaccurate during economic downturns.

5Buraschi and Whelan (2016) and Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2016) show that
disagreement among professional forecasters on future inflation and real growth have predictive power.
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is a large literature incorporating survey information directly into DTSMs. Extending

the frameworks of Kim and Orphanides (2012) and Chun (2011), Piazzesi, Salomao, and

Schneider (2013) model survey forecasts as subjective views that are distinct from those of

the econometrician. In these models, the median forecaster has full knowledge of risk-factor

dynamics and her forecasts are spanned by the low-order PCs of bond yields. However,

empirically, a large percentage of the variation in median BCFF forecasts is not spanned by

the risk factors P . We extend these frameworks by: (i) introducing learning about parameters;

(ii) allowing for belief heterogeneity to affect market prices of factor risks; and (iii) not tying

RA’s objective forecasts from her DTSM to the consensus BCFF forecasts. Together, these

features materially improve the accuracy of RA’s fitted risk premiums and real-time forecasts

relative to the median professional forecaster.

Agents in the bond-pricing models of David (2008), Xiong and Yan (2009), and Buraschi

and Whelan (2016) optimally filter for an unknown state (e.g., aggregate output), while

“agreeing to disagree” about the known values of the parameters governing the state process.

Equilibrium bond prices depend on the pairwise relative beliefs across all agent types, thereby

giving rise to a potentially high-dimensional factor space.6 Yet the low-order PCs account for

the vast majority of the cross-sectional variation in bond yields. Therefore, we instead follow

Joslin, Singleton, and Zhu (2011) (JSZ) and represent P in terms of yield PCs, which market

participants can reasonably be assumed to observe without error (Joslin, Le, and Singleton

(2013)). This motivates a second key difference with our setting: in our model the agent is

learning about the unknown parameters governing a directly observed state vector.7

Section 2 discusses the importance of learning and disagreement in simple theoretical

settings widely used in the literature. Additionally, it provides descriptive empirical evidence

(without the structure of a DTSM) on the importance of learning and dispersion of beliefs in

forming expectations on yields and excess returns. Section 3 sets forth our formal learning

problem in the context of a dynamic term structure model. Our formal learning rules are

then implemented empirically in Section 4 and Section 5. The extent to which conditioning

on belief dispersion H proxies for other forms of information about the macroeconomy is

explored in Section 6. Concluding remarks are in Section 7.

For comparability with the vast majority of macro-finance DTSMs, we explore the impact

6Similarly, the setting of Barillas and Nimark (2014) gives rise to a “forecasting the forecast of others”
problem (Townsend (1983), Singleton (1987)) which, in turn, leads to an infinite-dimensional set of higher-order
beliefs affecting bond prices.

7Collin-Dufresne, Johannes, and Lochstoer (2016) study equity risk premiums implied by a representative-
agent, consumption-based model in which there is learning about parameters. We instead focus on a reduced-
form SDF to ensure high accuracy in pricing of the entire yield curve (Dai and Singleton (2000), Duffee (2002)),
while exploring learning about the objective distribution of the (in our case bond-relevant) state of the economy.
Additionally, the Bayesian learner’s SDF in our model explicitly recognizes that investors are heterogeneous in
their beliefs and that this heterogeneity may be a source of priced risk.
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of learning on risk premiums within a conditionally Gaussian DTSM. This is natural given that

risk premiums are determined by the conditional first moments of yields. Of course investors

may update views about factor volatilities and, in fact, this appears to be the case with RA
within her conditionally Gaussian framework. Both the descriptive evidence presented in

Section 2 and the analysis of an extended DTSM with stochastic volatility in Appendix H

suggest that our core findings about risk premiums in the presence of learning are robust to

the presence of stochastic volatility.

2 Motivating an Impact of Learning on Risk Premiums

Before characterizing learning in the context of an arbitrage-free DTSM, it will be instructive

to highlight several robust implications of learning and investor disagreement within a

simple equilibrium setting. We first show that learning on the part of a representative

marginal agent can lead to risk premiums that are substantially different than those that

an econometrician would compute under the assumption that the marginal agent knows

the parameters governing her consumption process. This setting is then extended to allow

for disagreement among market participants. The latter analysis provides motivation for

conditioning on measures of disagreement when modeling risk premiums, and the descriptive

evidence presented subsequently supports such conditioning.

2.1 Learning in the Bond Market

Suppose that a representative marginal agent RA has preferences described by a constant

relative risk aversion utility function: u
(
Ct
)

= δ
C1−α
t

1−α , with consumption growth dCt/Ct = dct

being the only source of uncertainty in this economy. The evolution of ct is governed by

dct = µct + σcdW
c
t , (1)

where dW c
t is a Brownian motion, µct = κ

(
θc − ct

)
, and κ captures mean reversion.

If RA knows the parameters determining the dynamics of ct, then the instantaneous short

rate is given by

rt = − log(δ)− α
(
1 + α

)σ2
c

2
+ αµct.

The logarithm of the price of a real zero-coupon bond with maturity of n periods is an affine
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function of ct (Vasicek (1977)),8

pnt = an
(
θc, κ

)
+ bn

(
κ
)
ct. (2)

Finally, the expected value of the instantaneous excess return for this bond is

E[xrnt+dt|κ] = αbn
(
κ
)
σ2
c ≡ ασnc. (3)

Risk compensation is determined by the coefficient of relative risk aversion and the covariance

σnc between shocks to ct and bond prices.

Risk premiums for bonds are time-invariant in this simple model. However, the model

still provides an informative framework for exploring the implications of learning. Suppose

that RA does not know κ and that she has the Normal prior belief κ̃0 ∼ N
(
κ̂0, σκ0

)
. Over

time she learns about κ from the past history of ct based on the dynamic updating rules:

dct = κ̃t
(
θc − ct

)
+ σcdW̃

c
t , κ̃t ∼ N

(
κ̂t, σ

2
κt

)
,

dκ̂t =
σ2
κt(θc − ct)

σ2
c + σ2

κt

(
θc − ct

)2 (dct − κ̂t(θc − ct)),
dσ2

κt = − σ4
κt(θc − ct)2

σ2
c + σ2

κt

(
θc − ct

)2 .
To illustrate the impact of learning on risk premiums in a simplified setting we suppose

that RA ignores parameter uncertainty when pricing bonds. This assumption, referred to as

“anticipated utility” in equilibrium models with Bayesian learning (see, e.g., Kreps (1998) and

Cogley and Sargent (2008)), is often made for tractability, particularly in high dimensional

models.9 Under this convention, risk compensation at time t is given by

E[xrnt+dt|κ̂t] = αbn
(
κ̂t
)
σ2
c = ασnc(κ̂t). (4)

8Here bn
(
κ
)

solves the ordinary differential equation b
′
n = ακ − κbn + 1

2
b2nσ

2
c and an

(
θc, κ

)
solves a

′
n =

− log(δ)+α
(
1+α

)σ2
c
2
−ακθg+bnκθc+ 1

2
b2nσ

2
c . For ease of notation, we explicitly highlight only the dependence

of an and bn on the parameters determining µct.
9If RA factors uncertainty on κ̃t into her calculations, she would demand risk compensation equal to:

E[xrnt+dt|κ̂t, σκt] =

∫
E[xrnt+1|κ̃t]f(κ̃t)dκ̃t,

where f(·) stands for the Normal density function. Among recent studies of learning and the pricing of equities,
Johannes, Lochstoer, and Mou (2016) also adopt the assumption of anticipated utility, whereas Collin-Dufresne,
Johannes, and Lochstoer (2016) examine the impact of parameter uncertainty and learning in a more tractable
low-dimensional Markov setting.
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In this setting there is a direct link from learning about κt to the dynamics of risk premiums.

An econometrician who assumes that κ is known to RA and estimates this parameter using a

full sample up to date T would set κ equal to κ̂T . In contrast, RA would compute real-time

updates κt based on her learning rule, with κ̂T generally not equal to κ̂t, for t < T . Introducing

learning about the parameters of an inflation process would add an additional channel through

which learning could affect risk premiums on nominal bonds.

Motivated by the structure of (4) and the goal of more market-relevant insight into the

effects of learning on risk premiums on nominal bonds, we extend this representation of xrn

to allow for state-dependence. A typical representation of risk premiums in affine DTSMs for

nominal bonds has xrn depending linearly on the first three PCs of yields according to

xrnt+h = αn + BnPPt + σvvt+h, (5)

where BnP is a row vector of coefficients and vt+h is a mean zero residual. Suppose that RA
updates BnP in real time using recursive least-squares.10 For this simplified setting, RA’s

time t estimate B̂nt is given by:

B̂nt = B̂n,t−1 +R−1
t X

′
t

(
xrnt+h − α̂n,t−1 − B̂n,P,t−1Pt

)
, (6)

Rt = Rt−1 +X
′
tXt,

where Bn =
[
α

... BnP
]

and Xt ≡ [1,P ′t].
Figure 1 shows the difference in fitted expected excess returns from (5) over a one-quarter

horizon (h = 0.25y) for a ten-year zero-coupon US Treasury bond, full-sample estimates minus

those based on recursive least-squares learning.11 The shaded areas correspond to NBER

recessions. Even this simple learning scheme gives rise to risk premiums that are notably

different from their full-sample counterparts, as much as 4% annualized. (The differences

exceed 5% for the h = 1y horizon.) Moreover, the mechanical convergence of the recursive

least-squares estimates to the full-sample estimates is quite slow.

2.2 Accommodating Dispersion of Beliefs

Multiple institutional traders participate in US Treasury markets, and survey evidence

suggests that these professionals substantially disagree on the future path of macroeconomic

10In Section 3.2 we show formally that this is a Bayesian learning rule when RA views BnP as unknown and
fixed over time. Within the DTSM setting, RA will be following a more general rule that nests this special case.

11We use yields on zero-coupon bonds with maturities of 6 months and 1, 2, 3, 5, 7, and 10 years calculated
from coupon-bond yields as reported in the CRSP database using the Fama-Bliss methodology for the sample
period June, 1961 through December, 2015.

6



1975 1980 1985 1990 1995 2000 2005 2010 2015

(%
) 

E
xc

es
s 

R
et

ur
ns

-5

-4

-3

-2

-1

0

1

2

3

4

5
ExrFS − ExrRLS

Figure 1: Differences in one-quarter ahead expected excess returns for a 10-year zero-coupon
bond implied by the full-sample estimates less those from the recursive least-squares learning
scheme. The sample is monthly for the period from January 1972 to December 2015.

fundamentals and bond yields. Recent studies of equilibrium models in which heterogeneous

agents “agree to disagree” (e.g., Xiong and Yan (2009) and Buraschi and Whelan (2016))

show theoretically how this disagreement can affect equilibrium pricing of bonds.12

To illustrate how disagreement and learning interact in affecting risk premiums, suppose

that the economy has the same features as in the previous section except that bonds are

now priced by two agents, a and b, who both have constant relative risk aversion utility with

relative risk aversion coefficient α. For simplicity, suppose that these agents agree to disagree

about the value of the mean-reversion coefficient κ of the state ct, so that their subjective

dynamics of consumption are respectively:

dcat = µ̂act + σcdW
ac
t ,

dcbt = µ̂bct + σcdW
bc
t ,

where µ̂act = κ̂at
(
θc − ct

)
and µ̂bct = κ̂bt

(
θc − ct

)
. The (scaled) disagreement Ψt =

µ̂act−µ̂bct
σc

determines the change of measure between the subjective physical probability measures used

by a and b, ηt =
dPat
dPbt

. Basak (2005) shows in this setting that with complete markets the

12David (2008) develops a difference-of-opinion model with similar features for understanding risk premiums
in the equity markets.
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consumption shares for the two agents, ωa and ωb, depend on the history of disagreement ηt,

and that the short rate takes the form,

rt = δ − 1

2
α(1 + α)σ2

c + αµ̂ct+

+ αωa(ηt)(µ̂
a
gt − µ̂ct) + αωb(ηt)(µ̂

b
ct − µ̂ct) +

α− 1

2α
ωa(ηt)ω

b(ηt)Ψ
2
t . (7)

The implied risk premium on a real bond of maturity n is (Buraschi and Whelan (2016)):

E[xrnt+dt|κat , κbt ,Ψt, ηt] = ασ̄nc(Ψt, ηt) + σ̄nc(Ψt, ηt)
∑

i={a,b}

ωi
(
ηt
) µ̂ict − µct

σc
, (8)

where σ̄nc(Ψt, ηt) is the covariance between bond excess returns and consumption shocks and

µct is the drift of ct under the objective physical measure. Disagreement indirectly affects risk

premiums through the covariance between bond prices and shocks to c (recall from (3) that

the entire premium is ασnc in the single-agent economy), and it directly enters through the

weight on the average of the individual agents’ “expectation biases.”

While this stylized model motivates our subsequent conditioning of RA’s learning rule

on measures of disagreement, our econometric analysis does not literally build upon this

construction. Allowing for the diversity of investors in actual bond markets in this class

of difference-of-opinion models would give rise to a very high-dimensional state vector that

includes (η(a,b),Ψ
(a,b)
t ) for many pairs of investors. This is counter to the extensive evidence

that the covariance structure of yields is well described by a low-dimensional set of risk factors.

Additionally, we endow RA with an arbitrage-free DTSM-based learning rule, instead of one

derived from a consumption-based equilibrium model. Relative to reduced-form DTSMs,

consumption-based models typically have large pricing errors. Our goal is to explore the impact

of learning on bond-market risk premiums in a setting where bonds are priced accurately.

Investor disagreement is introduced in a parsimonious way by having RA condition her

learning rule on a summary measure of the point-in-time cross-investor dispersion of beliefs

about future bond yields. Atmaz and Basak (2017) provide a formal underpinning for using

this “sufficient statistic” for the impact of multiple-investor disagreements on bond prices.

They show that, in their economy with a continuum of investors who hold different beliefs

about the future payoff on a common stock, equilibrium prices are driven by the cross-sectional

average belief bias and cross-investor dispersion of beliefs.

Empirical counterparts to the constructs “consensus beliefs” and “investor disagreement”

are constructed using the BCFF survey of forecasts of yields over the period from January,

1985 through December, 2015, with the start date determined by data availability. The
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Horizon 0.25y 0.5y 0.75y 1y

ID(P1) 48.18% 59.93% 60.82% 58.46%
ID(P2) 19.63% 24.36% 25.09% 33.25%
ID(P3) 26.10% 31.36% 33.73% 38.98%
ID(y2y) 51.18% 58.84% 57.48% 55.11%
ID(y7y) 41.33% 52.85% 57.22% 56.84%

Table 1: R2’s from the projections of inter-quantile differences in BCFF forecasts onto P , over forecast
horizons of one through four quarters. The sample period is January, 1985 through December 2015.

survey forecasts are for 6-months U.S. Treasury bill yield and par yields on coupon bonds

with maturities of 1, 2, 3, 5, 7, and 10 years. The survey is run each month, and is typically

released at the beginning of the following month (usually the first business day), based on

information collected over a two-day period (usually between the 20th and the 26th of the

month). To facilitate comparisons of forecasts from our DTSMs with those by the BCFF

professionals, we use the survey-implied forecasts of zero-coupon bond yields computed by Le

and Singleton (2012).13

That the cross-sectional dispersion in beliefs about future bond yields does in fact have

predictive power for future yields is documented by extending (5) to

xrnt+h = αn + BnPPt + BnHHt + σnwwt+h, (9)

where h ≥ 1 is the forecast horizon and Ht measures investor disagreement about future

yields.14 We have omitted the median “consensus” beliefs of the BCFF professionals about

future P from (9) (even though a weighted average belief appears in (8)) because, after

controlling for Pt, measured median beliefs have negligable predictive power for excess returns.

Indeed, the first PC of the consensus BCFF yield forecasts15 is largely spanned by the yield

PC’s Pt: linear projections of the first PC of BCFF forecasts onto Pt gives R2’s of 99.5% for

one-quarter ahead forecasts and over 98% for one-year forecasts.

The components of Ht are constructed as the inter-decile ranges of the professional yield

13Whereas forecasting zero-coupon yields in an affine DTSM is a linear forecasting problem (see below), par
yields are nonlinear functions of zero-coupon yields. We avoid this complexity by interpolating the forecasts of
par yields to obtain approximate forecasts of zero yields.

14Buraschi and Whelan (2016) and Andrade, Crump, Eusepi, and Moench (2014), among others, present
evidence that disagreement about future output growth and inflation have predictive power for yields. Our
focus on dispersion in forecasts of future yields is motivated by the evidence that the priced factors in bond
markets are spanned by the yields themselves (the yield PCs have a low-dimensional factor structure). Notably,
in Section 6 we show that RA’s forecasts are more accurate when she conditions on disagreement about future
yields than on disagreement about future output growth or inflation.

15For fixed horizon j, we construct the first PC of the median forecasts of ynt+j by the BCFF professionals
across different maturities n.
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Figure 2: Historical measures of dispersions in professional forecasts one-year ahead for the
two- and seven-year bond yields, ID(y2y) and ID(y7y).

forecasts from the BCFF survey, which begins in January 1985.16 The differences between the

ninetieth and tenth percentiles of the cross-sectional distribution of forecasts over horizon j

are denoted by IDjt(y
m) for yields and IDjt(PCi) for PCs.17 In Table 1 we report the R2’s

from the projections of these dispersion measures onto the risk factors Pt for forecast horizons

of one through four quarters. Over 50% of the dispersion in beliefs about the level of the

yield curve, ID(P1), is spanned by the first three PCs of Treasury yields. Thus, disagreement

among the professional forecasters is effectively a priced risk in Treasury markets. There is

also considerable leeway for Ht to have incremental predictive power in (9).

For our subsequent analysis of learning we set H ′t =
[
IDt(y

2y), IDt(y
7y)
]

with the horizon

of the professional forecasts always set to one year (so we drop the subscript j = 1y). Figure 2

shows that disagreement is counter-cyclical as it tends to rise during and shortly after NBER

recessions. Moreover, ID(y2y) tends to be higher than ID(y7y) and the gap between them

(ID(y2y)− ID(y7y)) is relatively large following the two recessions in our sample. The years

2012-13 are exceptional for the persistently low level of ID(y2y).

As background for our formal analysis of learning, we examine the one-quarter forecast

16Our analysis of learning is qualitatively robust to measuring dispersion in beliefs as the cross-sectional
(point-in-time) volatility of professional forecasts (Patton and Timmerman (2010)) or the cross-sectional
mean-absolute-deviation in forecasts (Buraschi and Whelan (2016)), and our measure is similar to that used by
Andrade, Crump, Eusepi, and Moench (2014).

17In each month we check how many forecasters have published a forecast for the desired yield and predictive
horizon. Out of the total 117 forecasters, we usually find approximately 45 forecasts.
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based on recursive least squares estimates of (9) with 95% confidence bands. The left (right)
panel is for the 2 (10) year bond. The sample is from January 1995 through December 2014.

horizon within the recursive least-squares learning setting from Section 2.1.18 Figure 3 reports

estimates of the BnH for excess returns on bonds with maturities of 2 and 10 years. The

coefficients on ID(y2y) (ID(y7y)) are positive (negative) over the entire sample. In both cases

the coefficients are statistically significant at conventional levels, supporting our premise that

investor disagreement is incrementally informative about future yields.

3 Learning with a Dynamic Term Structure Model

The background in Section 2 informs the following specification of our learning problem.

Consider the space of future risky payoffs generated by portfolios of U.S. Treasury bonds with

weights that are functions of the history Zt1 ≡ (Zt, Zt−1, . . . , Z1) of a state vector Zt.
19 In the

absence of arbitrage opportunities and under weak regularity properties of the portfolio payoff

space, there exists a stochastic discount factor (SDF) MBt+1, and an associated equivalent

martingale measure Q that prices these Treasury portfolio payoffs (Dalang, Morton, and

Willinger (1990)). MB can be generically represented in terms of the risk-neutral and historical

18Statistical issues related to the choice of horizon for the prediction regressions (9) are discussed in depth in
Section 3.3 for our DTSM-based learning rules.

19For any variable X, the notation Xk
i , k > i, is short-hand for (Xk, Xk−1, . . . , Xi).
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(P) conditional distributions of the priced risk factors Pt in Treasury markets:

MB(Pt+1, Z
t
1) = e−rt × fQ(Pt+1|Pt)

fP(Pt+1|Zt1)
. (10)

Bond prices are recovered by discounting Treasury coupons by the appropriate multiples of

this bond-market specific MB(Pt+s+1, Z
t+s
1 ) under the objective measure P.

We endow our “econometrician” RA with MB and assume that it is the pricing kernel

she uses to compute risk premiums in Treasury markets in real time. As such, MB can be

interpreted as the reduced-form SDF that our forward looking econometrician uses to learn

about bond-yield dynamics. In addition, if there happened to be a marginal agent that priced

bonds using MB (an active arbitrageur, for example) then we are also effectively modeling

this agent’s SDF under the presumption that her trading did not affect bond prices. For ease

of reference, we subsequently refer to MB as RA’s bond-market SDF.20

There is substantial evidence that bond yields follow a low-dimensional factor structure

and, in fact, such structure underlies the pricing and risk management systems of primary

dealers. Accordingly, we assume that P is comprised of the observed first three PCs of bond

yields (there is no latent state that RA needs to infer in order to price Treasury bonds). In

constructing RA’s learning problem we first argue, on both conceptual and empirical grounds,

that RA is likely to know the Q distribution of P , the numerator of MB. This, together with

the fact that RA observes Pt at date t, implies that the central learning problem for RA
in Treasury markets is about the data-generating process for P. We subsequently specify a

specific functional form for fP(Pt|Zt−1
1 ) in (10) that formalizes our assumptions about RA’s

learning rule underlying her perceptions of risk premiums.

3.1 Risk-Neutral Pricing of Bonds

Absent arbitrage opportunities, and under regularity, market participants can reverse engineer

the risk-neutral distribution Q from the prices of traded bonds. This distribution will not in

general be unique, unless agents live in a dynamically complete economy. Therefore, just as

in prior studies of arbitrage-free DTSMs, our parametric specification of the Q distribution

fQ(Pt|Pt−1) is presumed to represent an econometrically identified member of the family of

admissible distributions.

Concretely, as in a Q-affine Gaussian DTSM, we assume that RA believes the one-period

20The potential connections between MB and the SDF of a representative agent, should one exist, are
discussed subsequently in Section 5.

12



riskless rate rt follows the factor structure

rt = ρ0 + ρPPt, (11)

with Pt following the autonomous Gaussian Q process

Pt+1 = KQ
0P +KQ

PPPt + Σ
1/2
PPe

Q
P,t+1. (12)

This leads her to set the price Dm
t of a zero-coupon bond issued at date t and maturing at

date t+m using the standard no-arbitrage formula

Dm
t = EQ

t

[∏m−1

u=0
exp(−rt+u)|ΘQ,Pt

]
. (13)

For the econometric identification of ΘQ, we follow JSZ and normalize ρ0, ρP , KQ
0P , and KQ

PP
as known functions of ΘQ ≡

(
kQ∞, λ

Q,ΣPP
)
, with kQ∞ a scalar,21 ΣPP the upper K ×K block

of ΣZ , and λQ the K-vector of eigenvalues of KQ
PP (see JSZ and Appendix B).

This JSZ normalization reveals clearly why it is reasonable to presume that all investors

(including RA) effectively know and agree on key elements of ΘQ. Yields take the form

ymt = Am(kQ∞, λ
Q,ΣPP) +Bm(λQ)Pt. (14)

Therefore, at each date t, the Bm(λQ) (and hence λQ) can be estimated very precisely from the

cross-section of Treasury yields;22 agents will effectively know λQ from the date t cross-section

yt. The maturity-specific intercepts Am depend also on kQ∞ and ΣPP . However, the impact of

ΣPP on Am is through a convexity adjustment that is typically very small (see Appendix A).

Therefore, knowledge of λQ and a tight prior on kQ∞ (also estimable from the cross-section of

yields) imply that agents effectively know the Am’s as well.

Some insight into the empirical plausibility of the assumption that market participants

know the parameters governing the drift of the Q distribution of Pt is revealed by the forecasts

of individual BCFF professionals. If all of the BCFF professionals believe that yields follow

(14), then the yield forecasts for horizon h ordered by deciles, yht,o1 < ... < yht,o10 , must satisfy

ŷmht,ok = Ām + B̄mP̂ht,ok + emht,ok , (15)

21When P follows a stationary process under Q, kQ∞ is proportional to the risk-neutral long-run mean of r.
We adopt this more robust normalization, since the shape of the yield curve may call for the largest eigenvalue
λQ
1 to be very close to or even larger than unity. See JSZ for details.
22This is why the factor loadings Bm are reliably recovered from contemporaneous correlations among bond

yields ymt and Pt (Duffee (2011)). It also explains why, holding (K,N,Z,P) fixed, estimates of λQ in DTSMs
without learning are nearly invariant across specifications of the P distribution of Z.
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Figure 4: Time-series projections of the decile-ordered one-year ahead yields forecasts by
BCFF forecasters onto their forecasts of PC1 and PC2.

where yht,o1 is the forecast of the professional falling at the tenth percentile, yht,o2 is the twentieth

percentile, and so on up to the ninetieth percentile (we focus on order statistics, because

the individual forecasters change over our sample). Holding h fixed, the loadings should

be common across the ordered professionals. Figure 4 displays the full-sample estimates

of these loadings by decile for PC1 and PC2 and h equal to one year (solid lines), along

with the corresponding sample least-squares estimates of the loadings based on (14). The

loadings are in fact remarkably similar across forecaster deciles, and the professionals’ values

correspond very closely to their sample counterparts. This is the case even though there are

large differences in the forecasts of future yields across deciles (substantial disagreement).

Proceeding under the assumption that ΘQ is known to RA, her SDF becomes

MB(ΘQ,Pt+1, Z
t
1) = e−rt × fQ(Pt+1|Pt; ΘQ)

fP(Pt+1|Zt1)
, (16)

with the numerator derived from (12) evaluated at ΘQ.

3.2 RA’s Learning Problem

The learning problem faced by RA is that of inferring the parameters governing the state-

dependence of fP(Pt+1|Zt1) from historical time-series data. We explore the pricing implications
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of the belief that Z ′t = (P ′t, H ′t) follows the historical process[
Pt+1

Ht+1

]
=

[
KP
P0,t

KP
H0,t

]
+

[
KP
PP,t KP

PH,t
KP
HP,t KP

HH,t

][
Pt
Ht

]
+ Σ

1/2
Z

[
ePP,t+1

ePH,t+1

]
, (17)

where ΘP
t , the vectorized (KP

0t,K
P
Zt) governing the conditional mean of Zt, is time varying and

unknown. The shocks ePP,t+1 and ePH,t+1 are jointly Gaussian. The portfolios Pt are assumed

to be priced perfectly by (13). The learning environment is completed with the following

pricing equation for Ot, the higher-order fourth through seventh PCs:

Ot = AO

(
ΘQ
)

+BO

(
ΘQ
)
Pt + εO,t, (18)

where (Pt,Ot) fully spans yt. The errors εO,t are assumed to be iid Normal(0,ΣO), with ΣO

diagonal (consistent with its sample counterpart from a regression of Ot on Pt).
Though the discussion in Section 3.1 suggests that λQ can be reliably assumed to be

known, trading desks recalibrate their yield curve models to new data on a regular basis.

This recalibration of the hedge ratios Bm(λQ) is perhaps premised on the view that (14) is

an approximation to the true bond pricing function. With this possibility in mind, for our

subsequent econometric analysis, we allow RA to update ΘQ monthly as new data becomes

available, using the model-implied likelihood. We assume that RA updates λQ each month

using the likelihood function (22), even though at each point in time she prices bonds treating

ΘQ as known and fixed. In our setting, this is analogous to the widely adopted approximation

to Bayesian learning of endowing agents with “anticipated utility” (see, e.g., Kreps (1998)

and Cogley and Sargent (2008)). Strikingly, even with this flexibility, RA treats (λQ, kQ∞) as

known and virtually fixed over our entire sample period (see Section 4).

Additionally, we assume that parameter variation per se is not a source of priced risk in

bond markets.23 Within this learning environment RA’s SDF MB takes the form:

M(ΘQ,Pt+1, Z
t
1) = e{−rt−

1
2

log |Γt|− 1
2

Λ̂′PtΓ
−1
t Λ̂Pt−Λ̂′PtΓ

−1
t εPt+1+ 1

2
(εPt+1)′(I−Γ−1

t )εPt+1}, (19)

Γt = Ω
−1/2
PP,tΣPP(Ω

−1/2
PP,t)

′,

Ω
1/2
PP,tΛ̂Pt = Λ̂0t(Θ

Q, Θ̂P
t ) + Λ̂1t(Θ

Q, Θ̂P
t )Zt, (20)

where the market price of risk Λ̂Pt depends on the posterior mean Θ̂P
t and, therefore, implicitly

23The absence of compensation for parameter risk is fairly standard in the literature on pricing with Bayesian
learning, and it greatly simplifies what is already a challenging modeling problem. Collin-Dufresne, Johannes,
and Lochstoer (2016) explore implications of priced parameter uncertainty in a single-agent, consumption based
setting with a much lower dimensional state space than what is required to reliably price bonds. Accommodating
priced parameter uncertainty within a higher dimensional DTSM is an interesting topic for further research.
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on the entire history Zt1 (Appendix D). The form of ΛPt is familiar from Duffee (2002)’s model

without learning, but importantly here the weights are state-dependent owing to learning.

Given ΘQ and the specification in (17), the physical distribution of Zt is determined by the

evolution of the unknown and drifting parameters ΘP
t . Below we show that if innovations to

ΘP
t are normally distributed, then the posterior density f(ΘP

t+1|Zt1,Ot1) also follows a normal

distribution. Furthermore, the conditional P-distribution of Zt+1 given Zt1 is:

fP(Zt+1|Zt1) = Normal
(
K̂P

0t + K̂P
ZtZt,Ωt

)
, (21)

where (K̂P
0t, K̂

P
Zt) denotes RA’s posterior mean of ΘP

t and her one-period-ahead forecast

covariance matrix Ωt depends on ΣZ and the uncertainty regarding ΘP
t . This P-process for Zt

is nonlinear (in particular, non-affine) and we compute RA’s optimal forecasts accordingly.

At date t a Bayesian RA, faced with new observations (Zt,Ot) and the past history

(Zt−1
1 ,Ot−1

1 ), evaluates an (approximate) likelihood function by integrating out the uncertainty

about ΘP
t using her posterior distribution. Thus, with (ΘQ,ΣO) known,

f(Zt1,Ot1) =
t∏

s=1

f(Os|Zs1 ,Os−1
1 ; ΘQ,ΣO)×∫

f(Zs|Zs−1
1 ,Os−1

1 ,ΘP
s−1; ΣZ)f(ΘP

s−1|Zs−1
1 ,Os−1

1 )d(ΘP
s−1). (22)

To allow for constraints on the market prices of risk, we partition ΘP
t as (ψr, ψP

t ), where ψP
t

is the vectorized set of free parameters and ψr is the vectorized set of parameters that are

fixed conditional on ΘQ. Letting ιr and ιf denote the matrices that select the columns of

(I ⊗ [1, Z ′t−1]) corresponding to the restricted and free parameters, and collecting the known

terms in (17) into Yt = Zt −
(
I ⊗ [1, Z ′t−1]

)
ιrψ

r, we rewrite the state equation as

Yt+1 = XtψP
t + Σ

1/2
Z ePZ,t+1, (23)

where Xt = (I ⊗ [1, Z ′t]) ιf .

To accommodate the possibility of permanent structural change in the underlying economic

environment, we assume that ψP
t evolves according to

ψP
t = ψP

t−1 +Q
1/2
t−1ηt, ηt

iid∼ Normal(0, I), (24)

where Qt−1 denotes the (possibly) time-varying covariance matrix of ηt, with ηt independent of

all past and future ePZt. RA knows that ψP
t follows (24), but she does not observe the realized ψP

t .

Her Bayesian learning rule filters for ψP
t conditional on (ΘQ, ψr). Adopting a Gaussian prior
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on ψP
0 leads to a posterior distribution for ψP

t that is also Gaussian, ψP
t |Zt1 ∼ Normal(ψ̂P

t , Pt).

In Appendix C we show that her posterior mean follows the recursion

ψ̂P
t = ψ̂P

t−1 +R−1
t X ′t−1Σ−1

Z (Yt −Xt−1ψ̂
P
t−1), (25)

which depends on the posterior variance Pt through R−1
t ≡ Pt −Qt, with Rt satisfying

Rt =
(
I − P−1

t−1Qt−2

)
Rt−1 + X ′t−1Σ−1

Z Xt−1. (26)

This rule has a revealing interpretation within the class of adaptive least-squares estimators

(ALS) of ψP
t . We say that ψ̂P

t is an ALS estimator if there exists a sequence of scalars γt > 0

such that ψ̂P
t can be expressed recursively as

ψ̂P
t = ψ̂P

t−1 +R−1
t X ′t−1Σ−1

Z (Yt −Xt−1ψ̂
P
t−1), (27)

Rt = γt−1Rt−1 + X ′t−1Σ−1
Z Xt−1. (28)

It follows immediately from (25) - (26) that the posterior mean in the Kalman filter used by

RA to update ψP
t can be represented as a generalized ALS estimator. Moreover, (26) reveals

three special cases where the filtering underlying Bayesian learning reduces to an actual ALS

estimator (that is, (26) reduces to (28)):24

B↓ALS: Setting P−1
t−1Qt−2 = (1 − δt−1) · I25 for some sequence of scalars 0 < δt ≤ 1, ψ̂t

becomes an ALS estimator of ψP with γt = δt.

B↓CGLS: Specializing further by setting δt = δ to a constant leads to ψ̂t being a constant

gain least-squares (CGLS) estimator of ψP with γ = δ.

B↓RLS: If the constant δ = 1, then ψ̂t is the recursive least-squares (RLS) estimator of ψP.

Among the insights that emerge from this construction is that a Bayesian agent whose

learning rule specializes to the RLS estimator is not adaptive in the following potentially

important sense. With γ = 1 we have Qt = 0, so an agent following a RLS rule is learning

about an unknown value of ψP that is presumed to be fixed over time. Consequently, sudden

changes in market conditions that result in sharp movements in recent values of Z may have

an imperceptible effect on ψ̂P
t as updated by RA. Indeed, in environments where the ML

estimator converges to a constant for large T , an RLS-based RA will be virtually non-adaptive

on ψ̂P to new information after a long training period.

24See McCulloch (2007), and the references therein, for discussions of similar issues in a setting of univariate
yt and econometrically exogenous xt.

25This condition can be obtained by recursively setting Qt−1 = 1
δt

(Pt−1 − Pt−1x
′
t−1Ω−1

t−1xt−1Pt−1).
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A more adaptive rule that responds to changes in the structure of the economy (owing say

to changes in government policies) is obtained by giving less weight to values of Z far in the

past. Such down-weighting arises naturally when RA’s learning specializes to Case B↓CGLS.

The constant-gain coefficient γ determines the “half-life” of the weight on past data. This

follows from the observation that, conditional on ΘQ, the first-order conditions to the likelihood

function implied by Bayesian learning with CGLS updating (Appendix C) are identical to

those of a likelihood with terms of the form γtεP′ZtΣ
−1
Z εPZt.

26

Expressions (23) and (24) are the measurement and transition equations in a Gaussian

linear filter over the unknown parameters. Therefore, the distribution of Yt+1 conditional on Zt1
is distributed fP(Yt+1|Zt1) = Normal

(
Xtψ̂P

t ,Ωt

)
, with the one-step ahead forecast variance

determined inductively by Ωt = XtPtX ′t + ΣZ . The term XtPtX ′t captures the uncertainty

related to the unknown ΘP, while the second term is the innovation variance of the state Zt.

Throughout this construction the direct dependence of Ωt on ΣZ is a consequence of

RA treating ΣZ as known, not as an object to be learned. This is an admittedly strong

assumption as, empirically, we will see that RA’s learning rule shows sizable revisions in

ΣZ . Though revisions in ΣPP through learning would be largely inconsequential for pricing

(convexity effects are small), they could be material for how RA updates beliefs about ΘP.

In Appendix H we show that our core findings are robust to the introduction of learning

about the structure of the conditional covariances of Z in a model with time-varying second

moments, which is described in detail in Appendix G.

3.3 Empirical Learning Rules

As a benchmark case, we estimate a three-factor DTSM in which RA follows a constant-

gain learning rule (CGLS) with conditioning on past information on P alone. We call this

framework rule `CG(P). The parameters of the pricing distribution are normalized as in JSZ

and, owing to learning, the coefficients on Pt in (20) that determine the market prices of risk

Λ̂ depend on the entire history Pt1. We also consider rule `(P), corresponding to the special

case of RLS learning, with γ = 1.

In Section 4 we explore the properties of rule `(P) initialized using ML estimates for the

“training” period June 1961 through January 1972. Then every month, up through December

2014, as new data becomes available, RA updates her posterior and the associated forecasts

of future P. Moving through the sample, DTSM-based rules impose the JSZ normalizations

based on current-month information about yields and updated weights determining the first

three PCs from the sample covariance matrix of yields. This is the longest sample period we

26The latter is the likelihood function of a naive learner who simply re-estimates the likelihood function of a
fixed-parameter model every period using the latest data and with down weighting by γt.
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use in our analysis. Thus, we highlight the rule estimated over this period with the superscript

L for “L”ong sample, `L(P).

The DTSM-based rules are quite highly parametrized. For parsimony, which is relevant for

the subsequent out-of-sample assessments, the parameters governing the market prices of the

risks P are set to zero if their p-value during the training period is larger than 0.4. Since KQ
PP

is presumed known by RA, these constraints on ΛP effectively transfer a priori knowledge of

λQ to (some) knowledge about KP
Z . All constraints on ΛP selected during the training period

are maintained throughout the remainder of the sample period.27

For the case of constant-gain learning (γ < 1), we set γ = 0.99. Appendix E offers two

complementary perspectives on this choice. First, if we allow RA to adjust γ over time,

then she selects fitted γt’s that remain quite close to 0.99. Second, her choice is evidently

ex post optimal. In fact, searching over fixed γ’s to minimize RA’s out-of-sample forecast

accuracy leads to a value of γ that is approximately 0.99 over the period January 1995 through

December 2014.

From the fitted DTSM at date t, an h-period ahead forecast of Z is given by

Ẑt+h = K̂P
0t +

(
K̂P
Zt

)
K̂P

0t + ...+
(
K̂P
Zt

)h−1
K̂P

0t +
(
K̂P
Zt

)h
Zt. (29)

This leads directly to the h-period ahead forecasts of yields:

ŷmt+h = Am

(
K̃Q

0 , K̃
Q
PP , Σ̃PP

)
+Bm

(
K̃Q
PP

)
P̂t+h, (30)

where the tildes indicate maximum likelihood estimators as of the forecast date.

In the literatures on forecasting with Gaussian DTSMs and vector autoregressions the

choice of the horizon h has not been without controversy, especially as h extends out a year

or longer, owing to potential small-sample biases.28 We emphasize that our assessments of

forecast accuracy are based on out-of-sample fit. Moreover, RA’s nonlinear forecasting rules

have the flexibility to uncover much richer forms of predictive power of Zt for future excess

returns than in standard affine DTSMs. With adaptive learning about K̂P
Zt, RA may change

her weights on components of Zt so that auxiliary (non-bond market) information in Zt shows

27We wondered whether adjusting the constraints in real time would improve out-of-sample forecasts.
Interestingly, for the rules we examine, such real-time updating leads to a deterioration in the quality of
forecasts, by a substantial degree. We found that this was true for a variety of training periods. Evidently,
real-time adjustments induce a form of over-fitting that compromises forecast accuracy.

28Stambaugh (1999) shows that the lack of strict econometric exogeneity in predictive regressions can lead
to significant small-sample biases in estimated coefficients, especially with highly persistent variables. More
recently, Bauer and Hamilton (2018) argue that there is a tendency for an upward bias in estimated R2’s in
excess return regressions in studies of bond-market returns owing to a “standard error bias,” and this bias is
potentially amplified when studying long-horizon forecasts using overlapping data.
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const PC1 PC2 PC3

PC1 0.0031 -0.0331 -0.1130 C(0)
p-value 0.0071 0.0398 0.0042 -
PC2 -0.00004 0.0217 C(0) -0.5040
p-value 0.2440 0.0786 - 0.0205

PC3 0.0005 C(0) C(0) -0.3043
p-value 0.0002 - - 0.0000

Table 2: Estimated parameters of the market prices of risk (20), along with their probability
values, for rule `LCG(P) trained from June 1961 through January 1972. C(0) are entries
constrained to zero.

substantial forecasting power under some economic/market conditions, and virtually none in

other periods.

In evaluating RA’s out-of-sample forecasting accuracy we reference two alternative rules.

The first, `(BCFF ), is the forecast rule implicitly used by the median professional forecaster

as surveyed by the Blue Chip Financial Forecasts. We also examine the simple yield-based

rule that has each zero yield following a random walk, rule `(RW ). BCFF forecasts are

averages over calendar quarters and cover horizons out to five quarters ahead. For example,

in January, 1999, the two-quarter ahead forecast for a specific variable will be equal to its

average value between April and June. For comparability across all forecast rules, we compute

similar quarterly averages for rules `L(P) and `(RW ).

4 Learning from Information in the Yield Curve: Rule `LCG(P)

The estimated parameters of the market prices of risk (MPR) for rule `LCG(P) are displayed in

Table 2, along with their probability values, with C(0) denoting the parameters set to zero in

RA’s learning rule. The “level” of the yield curve (PC1) is a major driver of the MPR’s for

PC1 and PC2, but not PC3. For the chosen training period, PC2 does not have a significant

economic impact on its own MPR, though it does impact the MPR of PC1 .

The real-time estimates of λQ from this learning scheme are displayed in Figure 5 (the

patterns for `L(P) are nearly identical). RA holds λQ virtually fixed over the entire sample,

consistent with the premise of her Bayesian rule for learning about ΘP
t . There is some drift

in the second eigenvalue λQ2 . However, repeating our learning exercise with the full vector

λQ fixed from the initial training period onward has a very small effect on the quantitative

properties of the rule-implied prices or forecasts.29

29Reassurance that this near constant λQ is not a mechanical implication of learning about fP(Pt+1|Zt1)
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Figure 5: Estimates from model `LCG(P) (with constraints on the market prices of risk

determined in December 1971) of the eigenvalues λQ (λP) of the feedback matrix KQ
1 (KP

1 )
governing the persistence in P . The estimates at date t are based on the historical data up to
observation t, over the period January 1972 through December 2014.

Pursuing this insight, if λQ is known and fixed over time, then so are the loadings Bm on

P in the affine pricing expression (14). Combining this with the fact that Pt is measured with

negligible error, the state-dependent components of bond yields that emerge from (14) with

learning take the same form Bm
(
λQ
)
Pt, just as in a DTSM without learning. Furthermore,

agents will use fixed “hedge ratios” over time to manage the risks of their bond portfolios.

This finding is especially striking in relation to how RA updates the historical eigenvalues

λP. These adjustments are relatively much larger for all three low-order PCs. This implies

that RA’s views about the objective feedback matrix KP
Z,t, and thereby risk premiums (see

under no-arbitrage restrictions is provided by running reduced-form, expanding-window regressions of the
principal components on individual bond yields:

ynt = ant +Bnt Pt + unt .

The loadings Bnt remain quite stable for yields across the maturity spectrum. Similar results are obtained using
constant gains least squares with γ = 0.99. The estimates of the weights that define P are also stable over time.
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Figure 6: Posterior standard deviations of the elements of [KP
0t,K

P
1t] implied by the constant-

gain `LCG(P) learning rules.

below), are changing substantially over time. The largest changes in the eigenvalues λPt of KP
Z

(Figure 5) occur during the Fed experiment in the early 1980’s (when λQ remained remarkably

stable). Even outside of this turbulent period there is substantial drift in λP1t and λP2t. The

estimate of λPt for `LCG(P) shows more temporal variation than the estimate for `L(P) owing

to the former’s down-weighting of historical data.

An interesting perspective on RA’s confidence in forecasts based on MB comes from

examining the standard deviations of her posterior distributions of the non-zero entries in

[KP
0t,K

P
PP,t] implied by rules `LCG(P) and `L(P). The latter rule presumes– quite likely falsely–

that ΘP is constant, so an RLS-based RA becomes increasingly confident about its value

about over time. In contrast, we can see in Figure 6 that under `LCG(P), confidence in the

fitted components of KP
PP,t associated with (PC1, PC2) tends to improve during the collapse

of inflation in the late 1970s but then remains flat or slightly decline over the remainder of

our sample period. This is a reflection of perceived risks regarding structural changes.

The relative accuracies of the rule-based forecasts, which depend primarily on RA’s choice

of Θ̂P
t , are summarized by the root-mean-squared errors (RMSE’s) displayed in Table 3 for

both quarterly and annual horizons. Below each RMSE are Diebold and Mariano (1995)

(D-M) statistics for assessing whether two RMSE’s are statistically the same, calculated as
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RMSE’s (in basis points) for Quarterly Horizon

Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 30.7
(−3.81)

[−]

32.6
(−2.98)

[−]

35.2
(−3.98)

[−]

36.1
(−5.06)

[−]

36.4
(−4.89)

[−]

36.0
(−3.96)

[−]

32.5
(−3.01)

[−]

`(BCFF ) 38.6
(−)

[3.81]

37.6
(−)

[2.98]

43.8
(−)

[3.98]

50.7
(−)

[5.06]

44.6
(−)

[4.89]

44.1
(−)

[3.96]

40.0
(−)

[3.01]

`L(P) 29.7
(−3.35)
[−0.82]

31.3
(−2.61)
[−0.86]

36.6
(−3.31)
[3.05]

37.01
(−4.97)
[2.05]

37.8
(−4.28)
[1.77]

37.03
(−3.62)
[1.86]

34.1
(−2.59)
[2.50]

`LCG(P) 31.1
(−3.52)
[0.44]

32.0
(−2.67)
[−0.49]

37.5
(−3.54)
[2.74]

37.7
(−5.30)
[1.90]

38.0
(−4.21)
[1.63]

36.5
(−4.02)
[0.72]

33.8
(−2.81)
[1.37]

RMSE’s (in basis points) for Annual Horizon

Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 118.8
(−1.00)

[−]

115.3
(−0.83)

[−]

103.3
(−1.90)

[−]

94.1
(−2.65)

[−]

84.9
(−2.82)

[−]

78.8
(−2.75)

[−]

70.8
(−2.70)

[−]

`(BCFF ) 128.8
(−)

[1.00]

123.9
(−)

[0.83]

122.1
(−)

[1.90]

122.5
(−)

[2.65]

105.9
(−)

[2.82]

100.6
(−)

[2.75]

88.1
(−)

[2.70]

`L(P) 115.5
(−1.22)
[−0.58]

112.5
(−1.19)
[−0.56]

107.4
(−1.77)
[1.41]

100.0
(−2.45)
[2.10]

91.8
(−2.10)
[2.12]

84.7
(−1.99)
[1.84]

78.1
(−1.31)
[2.05]

`LCG(P) 125.0
(−0.64)
[0.90]

122.2
(−0.25)
[0.96]

117.8
(−0.67)
[1.85]

109.0
(−1.59)
[2.00]

96.3
(−1.20)
[1.59]

85.5
(−1.59)
[1.02]

76.9
(−1.16)
[0.91]

Table 3: RMSE’s for forecasts from January, 1995 to December, 2014. The D-M statistics for
the differences between the DTSM- and BCFF-implied (DTSM- and RW -implied) forecasts
are given in parentheses (brackets).

extended by Harvey, Leybourne, and Newbold (1997).30 The first (in parentheses) tests

against `(BCFF ), and the second (in brackets) tests against `(RW ). Both DTSM-based

rules are statistically more accurate than the median professional `(BCFF ), while having

comparable accuracy to `(RW ). The outperformance of (`L(P), `LCG(P)) over `(BCFF ) is

seen across the entire maturity spectrum, which is notable given that RA is conditioning only

30Consider two sequences of forecast errors e1t and e2t, t = {1, 2, ..., T}, define dt ≡ e21t − e22t, and let

µ̂d =
1

T

T∑
t=1

dt and V̂d =

T∑
t=1

(dt − µ̂d)2 + 2

h∑
j=1

k(j/h)

T−j∑
t=1

(dt − µ̂d) (dt+j − µ̂d) ,

where k(.) is a Bartlett kernel that down-weights past lags to ensure that the variance of the difference in mean
squared errors stays positive. The number of lags h is set to three for the one-quarter ahead forecasts and to
twelve for the four-quarters ahead forecasts. Then the D-M statistic is equal to

√
T µ̂d/V̂

1/2
d .
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Figure 7: Average expected excess returns over holding periods of ten, eleven and twelve
months for the ten-year bond based on `LCG(P) and `(BCFF ) (left axis) and the slope of the
Treasury curve measured as y10y − y2y (right axis), January, 1972 to December, 2014.

on ex ante information about Pt whereas professionals have access to a broader information

set.

Figure 7 displays the expected excess returns for a one-year holding periods on ten-year

bonds implied by `(BCFF ) and `LCG(P). The premiums implied by these rules show major

differences after every NBER recession in our sample. Key to understanding these differences is

the strong positive correlation between the risk premium on ten-year bonds and the steepness

of the yield curve. Precisely when the Treasury curve is relatively steep, the median BCFF

forecaster believes that risk compensation is much lower than what is implied by our DTSM-

based learning rule. This finding complements (and is distinct from) Rudebusch and Williams

(2009)’s finding that the slope of the yield curve gives more reliable forecasts of recessions

than the one-year ahead recession probabilities from the Survey of Professional Forecasters.

Our focus is on risk compensation post-recessions as the U.S. economy recovers.

The risk premiums implied by `LCG(P) are much more highly correlated with (y10y
t − y2

t )

than are the premiums from `(BCFF ). The differences between the expected excess returns

from `LCG(P) and `(BCFF ) are attributable primarily to differences in forecasts of the ten-year

yield coming out of recessions. For example, following the low (recession) levels of y10y from
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RMSE’s (in basis points) for Annual Horizon
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 118.8
(−1.00)

[−]

115.3
(−0.83)

[−]

103.3
(−1.90)

[−]

94.1
(−2.65)

[−]

84.9
(−2.82)

[−]

78.8
(−2.75)

[−]

70.8
(−2.69)

[−]

`(BCFF ) 128.8
(−)

[1.00]

123.9
(−)

[0.83]

122.1
(−)

[1.90]

122.5
(−)

[2.65]

105.9
(−)

[2.82]

100.6
(−)

[2.75]

88.1
(−)

[2.69]

`CG(P) 108.9
(−1.60)
[−1.34]

105.7
(−1.68)
[−1.27]

98.7
(−2.28)
[−0.79]

90.9
(−2.93)
[−0.55]

83.0
(−2.98)
[−0.33]

77.0
(−3.10)
[−0.38]

70.8
(−2.74)
[0.01]

`CG(P, H) 109.0
(−1.42)
[−1.30]

104.9
(−1.51)
[−1.41]

95.9
(−2.20)
[−1.35]

86.7
(−2.94)
[−1.26]

76.9
(−3.36)
[−1.33]

69.9
(−3.88)
[−1.66]

63.4
(−3.75)
[−1.85]

Table 4: RMSE’s for one-year ahead forecasts, January 1995 to December 2014. The D-M
statistics for the differences between the DTSM- and BCFF-implied (DTSM- and RW -implied)
forecasts are given in parentheses (brackets).

late 2002 until 2004 the BCFF forecasters expected a much more rapid rise in y10y than did

RA’s more accurate rule `LCG(P). Put differently, the widespread advice to reduce long-term

bond positions as the US economy emerged from recent recessions, while consistent with the

subjective beliefs of the median BCFF forecaster, was in fact poor advice relative to the ex

ante signal from `LCG(P) and (with hindsight) the actual performance of bonds. Moreover,

using median BCFF forecasts of long-term bond yields to calibrate empirical learning rules

would likely lead to distorted measures of required risk compensations.31

5 Learning From Disagreement

The extended rule `CG(P, H) fits directly into our learning framework (same priced risk

factors Pt and SDF (16)) by expanding Z ′t to (P ′t, H ′t). Owing to the nonlinear updating rules

upon which RA bases her forecasts of future yields, the inclusion of Ht in Zt may materially

change RA’s forecasts of expected excess returns.32

Conditioning on Ht leads to a substantial improvement in forecast accuracy relative to the

DTSM-based rules that condition only on P (Table 4). For the B↓CGLS learner this pickup

in accuracy occurs across the maturity spectrum with a slight tendency for larger gains at

the long end of the Treasury curve. Moreover, `CG(P, H) outperforms rule `(RW ) across the

maturity spectrum (most significantly for long-maturity bonds). Again, `(BCFF ) is the least

accurate rule. As reassurance that the superior performance of `CG(P, H) is not an artifact of

31Gains in forecast performance may come from using information embedded in survey forecasts of short-term
rates and, indeed, Altavilla, Giacomini, and Ragusa (2014) present evidence consistent with this view.

32Z could be augmented to also include macroeconomic information, but we defer this extension until
Section 6, and focus for now on characterizing learning conditional on belief heterogeneity.
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RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

January, 1995 – December, 2000
`(RW ) 128 130 119 108 100 93 84
`(BCFF ) 136 131 125 113 104 95 85
`CG(P) 113 114 106 96 90 86 82
`CG(P, H) 111 112 101 89 81 76 71

January, 2001 – December, 2007
`(RW ) 154 144 127 114 90 71 56
`(BCFF ) 157 149 142 136 110 95 77
`CG(P) 142 134 124 111 90 74 58
`CG(P, H) 143 134 121 106 83 65 48

January, 2008 – December, 2014
`(RW ) 51 52 47 49 64 72 72
`(BCFF ) 82 84 95 115 102 110 100
`CG(P) 53 51 54 59 68 71 72
`CG(P, H) 55 52 53 58 66 69 69

Table 5: RMSE’s in basis points for one-year-ahead forecasts of individual bond yields over
the indicated sample periods.

small-sample bias, we note that the corresponding D-M statistics have even lower probability

values at the quarterly horizon. As with rule `CG(P), the outperformance of `CG(P, H) over

rule `(BCFF ) is especially large following recessions.

Table 5 provides a more nuanced view of the relative one-year forecast accuracies across

sub-periods. The outperformance of `CG(P, H) relative to both `(RW ) and `(BCFF ) was

especially large during the early 2000’s leading up to the global financial crisis, the most

challenging subperiod to forecast shorter term Treasury yields. The poor relative performance

of `(BCFF ) in forecasting the two- to three-year segment of the Treasury curve is interesting

in light of the findings of Fleming and Remolona (1999) and Piazzesi (2005) that this segment

of the yield curve shows the largest responses to surprise macroeconomic announcements.

The portion of our sample covering the global financial crisis was the easiest subperiod for

forecasting Treasury yields. With very short-term rates pegged essentially at zero, `(RW )

was the best performing rule out to the five-year maturity. `CG(P, H) and `(RW ) showed

nearly identical accuracy for long-maturity bonds. RA’s DTSM-based learning rules do not

directly incorporate a zero lower bound for the Federal Reserve’s policy rate (see, e.g., Kim

and Singleton (2012) and Christensen and Rudebusch (2015)). Nevertheless, the adaptive

nature of her rule gives a partial adjustment for the zero-rate policy. Indeed, shortening our

26



1996 1998 2000 2002 2004 2006 2008 2010
-20

-15

-10

-5

0

5

10

15

20

F
o
re

ca
st

 E
rr

o
rs

 (
%

)

Figure 8: Errors (in percent per annum) from forecasting the realized excess returns on the
ten-year bond over a one-year horizon based on rules `CG(P, H) (solid) and `CG(P) (dashed).

evaluation window to the period from 2008 to 2011 leads to outperformance of `CG(P, H)

over `(RW ). Only after several years of short rates near a zero lower bound does rule `(RW )

slightly outperform `CG(P, H) over the intermediate segment of the Treasury curve.

In which economic environments does conditioning on H improve RA’s forecast accuracy

over the simpler rule `CG(P)? From Figure 8 it is seen that Ht is particularly informative about

risk premiums– `CG(P, H) gives smaller forecast errors than `CG(P)– during major turning

points (peaks and troughs) in RA’s subjective risk premiums. The differences are particularly

large during the Asian financial crisis of 1998, following the burst of the “dot-com bubble,”

and during the recent financial crisis. That `CG(P, H) can manifest such selected periods of

relevance for H is possible owing to its nonlinear updating of the feedback matrix in (17).

Since `CG(P, H) is well approximated by a recursively updated constant-gain least-squares

rule, it is not unreasonable to argue that market participants could have implemented in real

time an approximate version of RA’s Bayesian learning rule.

6 Macroeconomic Information, Beliefs and Disagreement

Within-sample analyses of fixed-parameter vector-autoregressions provide substantial evidence

that macroeconomic fundamentals (e.g., Ludvigson and Ng (2010) and Joslin, Priebsch, and

Singleton (2014) (JPS)) and disagreement among professional forecasters about future inflation
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and real growth (e.g., Buraschi and Whelan (2016) and Ehling, Gallmeyer, Heyerdahl-Larsen,

and Illeditsch (2016)) have predictive power for excess returns in bond markets. This leads

us naturally to inquire as to whether our evidence on the predictive power of H arises as a

consequence of our omission of macro conditioning variables. That is, might the role of H be

simply that it is a stand-in for business cycle information?

An increasingly recognized issue when studying the predictive power of macro-variables

for future yields is that official macro-time series are continuously updated after their original

release date. To address this issue, we construct measures of inflation (INF) and real economic

activity (REA) that market participants would have known in real time. We use data from

the Archival Federal Reserve Economic Data (ALFRED) database, which reports the original

releases of macroeconomic series. Letting xs|t denote an economic statistic indexed to time s

and available at time t ≥ s, and recognizing that most economic statistics are released with a

one-month delay, an investor at time t can typically condition on

xt0−1|t, xt0|t, ..., xt−2|t, xt−1|t,

where t0 indicates the start of the training sample. Importantly, this is the fully updated series

through time t, and not the series as it was released in real time.33 INF is the twelve-month

log difference of the Consumer price index for all urban consumers that is available at the

time of estimation. REA is the three-month moving average of the first principal component

of six series related to real economic activity.34

Using the BCFF panel of forecasters, we construct consensus (median) forecasts of

one-year inflation Cons(INF ) and real GDP growth Cons(RGDP ) from the monthly cross-

sections of forecasters.35 Similarly, disagreement about one year ahead inflation ID(INF ) and

growth ID(RGDP ) are measured as the inter-decile ranges of the cross-sections of forecasts.

Both INF and REA are negatively correlated with forecasters’ disagreement about future

macroeconomic variables, ID(INF ) and ID(RGDP ). Just as with disagreement about

future yields, disagreement about the macroeconomy increases during weak economic times,

as inflation and real economic activity decline.

33Prior studies using original release data have not always updated their series through time t as we do (e.g.,
Ghysels, Horan, and Moench (2014)). Such studies are using stale data relative to what market participants
knew at the time they constructed their forecasts.

34The series are the difference in the logarithm of Industrial production index (INDPRO), the difference in the
logarithm of total nonfarm payroll (PAYEMS), the difference of the civilian unemployment rate (UNRATE), the
difference of the logarithm of “All employees: Durable goods” (DMANEMP), the difference of the logarithm of
“All employees: Manufacturing” (MANEMP), and the difference of the logarithm of “All employees: NonDurable
goods” (NDMANEMP). The first PC is smoothed similarly to the Chicago Fed National Activity Index.

35We compute one-year-ahead expected inflation and real GDP growth for each forecaster as the average of
the one, two, three and four quarter ahead forecasts.
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Dep. Variable: ID(2y) Dep. Variable: ID(7y)-ID(2y)

Const. 0.0137
[11.3905]

−0.0024
[−0.9475]

−0.0070
[−3.5984]

−0.0001
[−0.1831]

0.0011
[0.6936]

0.0020
[1.3320]

REA −0.0002
[−0.6188]

−0.0007
[−2.7495]

−0.0003
[−1.3915]

0.0002
[1.0369]

0.0003
[1.4204]

0.0002
[1.0436]

INF −0.0380
[−0.8705]

−0.0120
[−0.3056]

0.0056
[0.2125]

−0.0330
[−1.2323]

−0.0340
[−1.2129]

−0.0386
[−1.4753]

Cons(RGDP) −
[−]

0.1654
[2.2722]

0.1786
[3.4220]

−
[−]

−0.0693
[−1.9647]

−0.0745
[−2.2288]

Cons(INF) −
[−]

0.3867
[9.0096]

0.2564
[6.8984]

−
[−]

0.0245
[1.1187]

0.0489
[1.7259]

ID(RGDP) −
[−]

−
[−]

0.2345
[4.0740]

−
[−]

−
[−]

−0.0811
[−1.9215]

ID(INF) −
[−]

−
[−]

0.3433
[4.2397]

−
[−]

−
[−]

−0.0192
[−0.3253]

R-square 2.44% 52.70% 68.16% 1.96% 7.32% 10.19%

Table 6: Regressions of yields disagreement on macroeconomic information. Sample from
January 1985 through December 2014.

Table 6 reports the contemporaneous projection of the level ID(y2y) and slope ID(y7y)−
ID(y2y) of disagreement onto current (INF,REA) and beliefs about future (INF,RGDP ).

Nearly seventy percent of the variation in ID(y2y) is accounted for by variation in consen-

sus forecasts (Cons(INF ), Cons(RGDP )) and disagreement (ID(INF ), ID(RGDP )). Yet

the pattern of coefficients in Figure 3 for the excess return on the ten-year bond shows

that weights on ID(y2y) and ID(y7y) are approximately equal in opposite signs, suggesting

that disagreement about the yield curve has predictive power for risk premiums primarily

through the slope ID(y2y) − ID(y7r). It is striking that this slope is virtually orthogo-

nal to (INF,REA) and (ID(INF ), ID(RGDP )), and shows only weak correlations with

(Cons(INF ), Cons(RGDP )). This provides an initial hint that the predictive power of H in

RA’s learning rule is not because it is a proxy for macroeconomic information.

To formally evaluate the contribution of macro variables to RA’s learning we expand the

conditioning information in the dynamic learning framework of Section 3, again setting the

gain coefficient γ equal to 0.99. The out-of-sample RMSEs of forecasts of excess returns for the

one-year holding period are reported in Table 7. The macro learning rule `CG(P, REA, INF )

performs comparably to or actually underperforms the simpler nested rule `CG(P). The only

subperiod during which `CG(P, REA, INF ) outperforms `CG(P) is leading up to the recent

crisis (Part B), and this relative accuracy is attained only out to the three-year maturity.36

36These findings suggest that the full-sample analysis of JPS likely overstates the real-time predictive power
of output growth and inflation for risk premiums in bonds markets. Though based on a very different form of
evidence, our findings are consistent with the concerns of Bauer and Hamilton (2018). Consistent with JPS,
there is some evidence of predictive power, particularly for REA, during the first part of the 2000’s.
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2Y 3Y 5Y 7Y 10Y

Part A: January, 1995 – December, 2014
`CG(P) 1.10% 1.97% 3.39% 4.76% 6.65%
`CG(P, H) 1.09% 1.92% 3.17% 4.36% 5.96%
`CG(P, REA) 1.07% 1.96% 3.50% 5.02% 7.22%
`CG(P, REA, INF ) 1.07% 1.97% 3.51% 5.04% 7.24%
`CG(P, H,REA) 1.07% 1.92% 3.32% 4.68% 6.60%
`CG(P, ID(RGDP ), ID(INF )) 1.20% 2.16% 3.71% 5.23% 7.14%

Part B: January, 2001 – December, 2007
`CG(P) 1.37% 2.44% 3.84% 4.95% 5.72%
`CG(P, H) 1.36% 2.39% 3.60% 4.47% 4.79%
`CG(P, REA) 1.22% 2.29% 4.02% 5.72% 7.71%
`CG(P, REA, INF ) 1.23% 2.32% 4.09% 5.84% 7.92%
`CG(P, H,REA) 1.21% 2.21% 3.69% 5.08% 6.53%
`CG(P, ID(RGDP ), ID(INF )) 1.48% 2.65% 4.21% 5.48% 6.70%

Table 7: RMSEs for average expected excess returns over holding periods of ten, eleven and
twelve months, based on learning rules with different choices of conditioning information.

By contrast, conditioning on H in rule `CG(P, H) reduces the RMSE of the ten-year bond

return by 0.7% relative to rule `CG(P) (Part A, a 10.5% reduction of the RMSE), and by

1.3% relative to rule `CG(P, REA) (an 18.5% reduction of the RMSE). Rule `CG(P, H,REA)

delivers RMSEs that are very close to those obtained from `CG(P, H). Thus, the source of

forecasting power of H for the long end of the curve is distinct from the macroeconomic

information (INF,REA). Moreover, combining P with beliefs on future macroeconomic

information (Cons(RGDP ), Cons(INF )) and (ID(RGDP ), ID(INF )) leads to sizable de-

teriorations in forecasting accuracy relative to rule `CG(P, H), across the entire maturity

spectrum.

The relative outperformance of rule `CG(P, H) over `CG(P, REA) can be seen from

Figure 9, which displays the average expected excess returns for the ten-year bonds against the

corresponding realized returns. The outperformance of `CG(P, H) is at times large, especially

during and immediately after NBER recessions. The primary exceptions, when `CG(P, REA)

outperforms, are during portions of the post-crisis period, from 2012 through 2015. This

incremental role of REA over and above H can also be seen from rule `CG(P, H,REA).

6.1 Direct and Indirect Contributions of Disagreement

Within our learning models there are two channels through which conditioning information

not spanned by the yield curve can impact expected excess returns. The first is the direct
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(a) Ten-Year ZCB: `CG(P, H), `CG(P, REA)
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(b) Ten-Year ZCB: rules `CG(P, H), `CG(P, H,REA)

Figure 9: Average expected excess returns over holding periods of ten, eleven and twelve
months for ten-year bonds based on `CG(P, H), `CG(P, REA) and `CG(P, H,REA), overlaid
with the realized returns.

effect that this information has on forecasts of future PCs as components of Zt in (29). The

second is the indirect effect on how RA updates the parameters (K̂P
0t, K̂

P
Zt) by conditioning on

information beyond P as part of the learning process. We can frame these effects in terms of

risk premiums, and within our favorite model with conditioning information Z = [P, H]. Let

ern,1t (P, H) (ern,1t (P)) denote RA’s expected excess return from holding a bond with maturity

n for one year under rule `CG(P, H) (`CG(P)). Using (29) and the expression for realized

excess returns in terms of ŷnt+h, we can write:

ern,1t (P, H) = âP,Hn,t + b̂P,Hn,t Pt + ĉn,tHt, (31)

ern,1t (P) = âPn,t + b̂Pn,tPt. (32)

We separate the direct and indirect effects of H in (31) by estimating a rolling constant-gain

least-squares projection of Ht onto Pt,

Ht = α̂t + β̂tPt + ut, (33)

and then construct the pseudo risk premium

ern,1t (P, 0) = (âP,Hn,t + ĉn,tα̂t) + (b̂P,Hn,t + ĉn,tβ̂t)Pt ≡ âP,0n,t + b̂P,0n,t Pt. (34)
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σ2[er10,1] σ2[er10,1(P, 0)] ρ(er10,1, er10,1(P, 0))
σ2[er10,1−er10,1(P,0)]

σ2[er10,1]

January, 1995 – December, 2014
`CG(P, H) 0.12% 0.09% 94.67% 10.83%
`CG(P, REA) 0.11% 0.07% 83.23% 31.10%
`CG(P, ID(RGDP ), ID(INF )) 0.16% 0.17% 96.03% 7.99%
`CG(P, Cons(RGDP ), Cons(INF )) 0.16% 0.08% 77.47% 40.32%

January, 2001 – December, 2007
`CG(P, H) 0.14% 0.12% 95.53% 8.77%
`CG(P, REA) 0.11% 0.04% 71.48% 49.71%
`CG(P, ID(RGDP ), ID(INF )) 0.15% 0.16% 96.54% 7.48%
`CG(P, Cons(RGDP ), Cons(INF )) 0.09% 0.07% 77.98% 40.34%

January, 2008 – December, 2014
`CG(P, H) 0.17% 0.11% 95.94% 10.62%
`CG(P, REA) 0.13% 0.08% 81.53% 33.53%
`CG(P, ID(RGDP ), ID(INF )) 0.11% 0.09% 86.69% 25.15%
`CG(P, Cons(RGDP ), Cons(INF )) 0.36% 0.12% 88.72% 31.30%

Table 8: Statistics for risk premia and pseudo-risk premia (see (34)) from various learning
rules. All statistics refer to the average expected excess returns over holding periods of ten,
eleven and twelve months for the ten-year bonds.

The difference between ern,1t (P, 0) and ern,1t (P) arises entirely from the effect that H has

on the updating of the weights on Pt when learning is conditioned on the full information

generated by (P, H)37. The same decomposition can be constructed for the “macro-rules”

discussed in the previous section.

Figure 10, Panel (a) displays the one-year-ahead expected excess returns (average of

twelve, eleven and ten months ahead) for the ten-year bond from rule `CG(P, H) against the

corresponding pseudo risk premia er10,1(P, 0). These premia track each other very closely,

and in Table 8 we show that their sample correlation is close to 95%. This suggests that the

direct effect of H on expected excess returns is small (its effect is mostly indirect through

coefficient updating). This finding also holds for the subsamples reported in Table 8. Further,

the ratio of the variance of the difference between the risk premia and pseudo-risk premia to

the variance of the risk premia (last column) is always below 11%, again consistent with the

hypothesis that the direct effect of H on RA’s expected excess returns is unsubstantial.

Precisely how are these indirect effects of H manifested in RA’s risk premiums? Figure 11

shows the difference [b̂P,010y,t − b̂P10y,t] of the weight on PC1 (the “level” factor) weighted by the

sample standard deviation of PC1. This captures the relative sensitivity of the pseudo excess

return ern,1t (P, 0) implied by rule `CG(P, H) and the excess return ern,1t (P) from rule `CG(P)

to a one standard deviation shock in PC1. Any differences are entirely the consequence of

37While it is true that (33) is fit outside of our DTSM, the (α̂t, β̂t) that we recover using monthly data
would be literally identical to those recovered within a DTSM without constraints on the market prices of risk.
This is an immediate implication of the propositions in JSZ. Therefore, we believe we are obtaining a reliable
picture of the impact of H on the loadings on P in the expression for ern,1t (P, 0).
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Figure 10: Average expected excess returns over holding periods of ten, eleven and twelve
months for the ten-year bonds. Comparison between risk premia generated by the learning
rule, and pseudo risk premia computed according to (34).

the indirect effect of H on RA’s subjective risk premia. The pattern of negative differences

implies that excess returns tend to be less responsive to shocks to the level of interest rates

under `CG(P, H) than under `CG(P) during and following recessions. These periods are

also when relative disagreement (ID(y2y) − ID(y7y)) is large. Taken together, the results
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Figure 11: Relative sensitivity of the excess returns of the 10-year bond in rules `CG(P, 0) and
`CG(P) to a one standard-deviation shock to PC1: the difference [b̂P,0t,10y − b̂Pt,10y]1 (estimated
every month from (32) and (34)) of the weight on PC1 scaled by the unconditional standard
deviation of the PC1, computed over the sample from January 1985 through December 2014.

suggest that the higher trading volume naturally associated with heightened disagreement

reduces the pressure on prices following shocks to the level of interest rates. In contrast, when

disagreement is relatively low, H induces greater price sensitivity to shocks to PC1 under

`CG(P, H) compared to `CG(P).38

6.2 Direct and Indirect Contributions of Macro Information

Interestingly, the direct effects are much larger in the macro rules. Panel (b) of Figure 10 shows

substantial differences for rule `CG(P, REA), especially during and immediately following

recessions. Table 8 shows that the correlation between risk premia and pseudo-risk premia is

only 83% over the entire sample, and the last column suggests that much of the variation

in er10,1(P, REA) arises from the direct effects of REA on risk premia. Rule `CG(P, REA)

delivers its best performance over the sample from January 2001 through December 2007 when

the correlation between the risk premia is only 77.47%, and the variance ratio is close to 50%.

38Malmendier, Pouzo, and Vanasco (2017) develop a theory of experiential effects in financial markets that
induces a similar pattern for how disagreement affects price-pressure effects. Their disagreement is across
generations, and our measures are across active professionals in the market.
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Similar observations apply for `CG(P, Cons(CPI), Cons(RGDP )) (Panel (d) of Figure 10).

Thus, both real-time macroeconomic information and consensus beliefs have a substantial

direct effect on expected excess returns.

The corresponding results for rule `CG(P, ID(CPI), ID(RGDP )) (Panel (c) of Figure 10)

show that the risk and pseudo-risk premia track each other closely, and their correlation is

over 96% ( Table 8). This rule delivers its best performance in the latest subsample. During

this subperiod, the correlation between risk premia and pseudo-risk premia is only 86.69%,

and the variance ratio in the last column is larger than 25%. Thus, again, there is a moderate

direct effect of ID(CPI) and ID(RGDP )).

7 Concluding Remarks

Three notable patterns emerge from our analysis: (i) RA effectively treats the parameters

governing the risk-neutral distribution of the pricing factors P as known and constant over

time (they were held virtually constant over the past thirty years); (ii) given this finding,

a constrained version of the optimal Bayesian learning rule specializes to constant-gain,

least-squares learning; and (iii) implementing the rule `CG(P, H) in real time gives rise to

forecasts of future bond yields and risk premiums that substantially outperform the analogous

rule `CG(P) based on yield curve information alone, the learning rule implicitly followed

by the median BCFF professional forecaster, and learning rules that condition on real-time

information about the macroeconomy. These outperformances are especially large following

recessions, when disagreement about future two-year Treasury yields is high.

Since our learning rules are inherently reduced-form, we cannot reach definitive conclusions

regarding the economic mechanisms through which the dispersion measures H gain their

predictive power. Nevertheless, several intriguing patterns emerge that are suggestive of

fruitful directions for theoretical modeling. Under the premise that there is heterogeneity of

views in the U.S. Treasury markets, the most likely source of disagreement is regarding the

future paths of bond yields and not about the connection between the current state of the

economy and current yields. Financial institutions have long recognized that the cross-section

of bond yields is well described by the low-order PCs which are readily observable. Indeed,

most use pricing and risk management systems that presume that current economic conditions

are fully reflected in the PCs.

A notable feature of rule `CG(P, H) is that, to a substantial degree, measures of dispersion

in beliefs about future bond yields (H) affect risk premiums through the weights that RA
assigns to the current PCs when forecasting future yields. RA finds it optimal to adjust the

predictive content of Pt about future Pt+s depending on the degree of disagreement in the
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market, and this is especially the case after NBER recessions. During periods of heightened

disagreement, RA’s risk premiums are relatively less sensitive to shocks to the level of interest

rates than during periods when disagreement is relatively low. Additionally, the effects of H

on forecasts persist over several months. This leads us to doubt that the primary impact of

H is through high-frequency episodes of flight-to-quality.

H does not seem to be a proxy for omitted macroeconomic information. Indeed, learning

rules that include macro information frequently perform worse than the rule `CG(P), which

uses only the shape of the yield curve as conditioning information.

Pursuing this further, we computed the correlations between IDslp
t ≡ 1/2(ID7y

t − ID
2y
t ))

and the measures of “economic policy uncertainty” constructed by Baker, Bloom, and Davis.

We included both their overall index and twelve of their subcategories of policy uncertainty39.

In all cases the correlations were very small. This is further evidence that the predictive

power of H is at most weakly tied to uncertainty about the macroeconomy as conventionally

measured.

39This data was downloaded from www.policyuncertainty.com.
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Appendices

A Bond Pricing in GTSMs

Suppose that bonds are priced under the presumption that ΘQ is fixed.

rs = ρ0 + ρ1Ps,

Ps+1 = KQ
0P +KQ

PPPs + Σ
1/2
PPe

Q
P,s+1,

The price of a zero coupon bond is then given by:

Dm
s = eAm+BmPs ,

Where m denotes the maturity of the bond. We can calculate Am and Bm by solving the first

order difference equation:

Am+1 −Am =
(
KQ

0

)′
Bm +

1

2
B′mΣPBm − ρ0,

Bm+1 − Bm =
(
KQ

1 − I
)′
Bm − ρ1.

With initial conditions A0 = 0 and B0 = 0. The loadings for the corresponding bond yields

are Am = −Am/m and Bm = −Bm/m.

B The Canonical Model

Under the assumption that ΘQ is fixed, we can proceed by adopting the computationally

convenient Joslin, Singleton, and Zhu (2011) normalization scheme. Specifically, let Xs denote

a set of latent risk factors with

rs = 1′Xs,

Xs+1 =

k
Q
∞

0

0

+ J(λQ)Xs + Σ
1/2
XXe

Q
X,s+1,

with bond loadings:

yms = AX,m(kQ∞, λ
Q,ΣXX) +BX,m

(
λQ
)
Xs.
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Under this normalizations Joslin, Singleton, and Zhu (2011) show that there exits a unique

rotation of Xs so that the factors are the first three principal components of bond yields:

Ps = v(kQ∞, λ
Q,ΣXX ,W ) + L

(
λQ,W

)
Xs,

where v = W [AX,m1 , ..., AX,mJ ] and L = W [BX,m1 , ..., BX,mJ ], and W denote the principal

component weights. The bond loadings Am and Bm in the expression

yms = Am(ΘQ) +Bm(λQ)Ps,

are fully determined by the parameters ΘQ = (kQ∞, λ
Q,ΣPP) and the principal component

weights W . Furthermore, the parameters KQ
0P , KQ

PP , ρ0 , ρ1, and ΣXX are all transformations

of the elements in ΘQ:

KQ
0P = L

k
Q
∞

0

0

− LJ(λQ)L−1v,

KQ
PP = LJ(λQ)L−1,

ρ0 = −1′L−1v,

ρ1 = (L−1)′1,

ΣPP = LΣXXL
−1.

See Joslin, Singleton, and Zhu (2011) for details and proofs.

C Log likelihood function

We begin by noting that when (ΘQ,ΣO) and ΣZ are presumed to be constant, equation (22)

implies that we can decompose the log likelihood function into a P and Q part

−2 logL = −2 logLQ(ΘQ,ΣPP ,ΣO)− 2 logLP(ΘP
t ,ΣZ , Qt).

logLQ denotes the part of the likelihood function associated with pricing errors and logLP

the likelihood function of the dynamic evolution of Zt,

Zt+1 = KP
Z,0t +KP

Z,1tZt + Σ
1/2
Z ePZ,t+1, (35)

where Z ′t = (P ′t, H ′t)′ and ΘP
t = [KP

Z,0t,K
P
Z,1t] denotes the drifting parameters. We assume ΘP

t

can be partitioned as (ψr, ψP
t ), where ψP

t is the vectorized set of free parameters and ψr is the
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vectorized set of parameters that are fixed conditional on ΘQ. The unrestricted parameters,

ψP
t , evolve according to a random walk

ψP
t = ψP

t−1 +Q
1/2
t−1ηt ηt

iid∼ N(0, I), (36)

with stochastic covariance matrix Qt−1. By moving terms that involve known parameters and

observable states to the left hand side we can rewrite equation (35) into

Yt = Xt−1ψ
P
t−1 + Σ

1/2
Z ePZ,t, (37)

where

Yt = Zt −
(
I ⊗ [1, Z ′t−1]

)
ιrψ

r,

Xt =
(
I ⊗ [1, Z ′t]

)
ιf ,

with ιr and ιf denoting the matrices that select the columns of (I ⊗ [1, Z ′t−1]) corresponding

to the restricted and free parameters respectively. With normally distributed innovations to

the latent parameter states (36) (the transition equation) and to the factor dynamics (37)

(the measurement equation) we have a well-defined linear Kalman filter.40 Conditional on

(ΘQ,Σ) the solution to the Kalman filter is given by recursively updating the posterior mean

ψ̂P
t = EP(ψP

t |Zt1), posterior variance Pt = VP(ψP
t |Zt1), and forecast variance Ωt = VP(Zt+1|Zt1)

according to:

ψ̂P
t = ψ̂P

t−1 + Pt−1X ′t−1Ω−1
t−1(Yt −Xt−1ψ̂

P
t−1), (38)

Pt = Pt−1 +Qt−1 − Pt−1X ′t−1Ω−1
t−1Xt−1Pt−1, (39)

Ωt−1 = Xt−1Pt−1X ′t−1 + ΣZ , (40)

with P log likelihood function given by

−2 logLP = (t− 1)N log(2π) +

t∑
s=2

log |Ωs−1| (41)

+
1

2

t∑
s=2

(Ys −Xs−1ψ̂s−1)′Ω−1
s−1(Ys −Xs−1ψ̂s−1).

40Note that the latent states in the filtering problem are the parameters and not the factors.
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Reworking equation (38) gives41

ψ̂P
t = ψ̂P

t−1 + (Pt −Qt−1)X ′t−1Σ−1
Z

(
Yt −Xt−1ψ̂

P
t−1

)
. (42)

Letting Rt = (Pt −Qt−1)−1, (42) reduces to the first equation in the definition of an adaptive

least squares estimator (see (27)). Equation (39) can then be rewritten as42

(Pt −Qt−1)−1 = P−1
t−1 + X ′t−1Σ−1

Z Xt−1 (43)

= (I − P−1
t−1Qt−2)(Pt−1 −Qt−2)−1 + X ′t−1Σ−1

Z Xt−1,

which reduces to (28) if Qt−2 = (1− γt−1)Pt−1, for a sequence of scalars 0 < γt ≤ 1. Using

(39) it follows that this condition is satisfied by choosing

Qt−1 =
1− γt
γt

(
Pt−1 − Pt−1X ′t−1Ω−1

t−1Xt−1Pt−1

)
.

From this expression it also follows that Qt−1 is measurable with respect to Zt−1
1 as long

as γt is measurable. We can summarize the preceding calculations as:

Rtψ̂
P
t = γt−1Rt−1ψ̂

P
t−1 + X ′t−1Σ−1

Z Yt, (44)

Rt = γt−1Rt−1 + X ′t−1Σ−1
Z Xt−1, (45)

ψ̂P
t = R−1

t Rtψ̂
P
t , (46)

Pt =
1

γt
R−1
t , (47)

Ωt−1 = Xt−1Pt−1X ′t−1 + ΣZ , (48)

with log likelihood function given by (41). The constant gain estimator corresponds to the

special case where γt = γ for all t.

D Pricing Kernel

The pricing kernel can be expressed as

Mt,t+1 = e−rt ×
fQt,t+1(Pt+1)

fPt,t+1(Pt+1)
.

41Substitute (40) into (39) and the resulting equation into (38).
42This expression is obtained by substituting (40) into (39), plugging the resulting equation back into (39),

and multiplying by (Pt −Q−1)−1 from the left and P−1
t−1 from the right.
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Since the distributions are conditionally normal under both measures, they have equal support.

Then, Mt,t+1 defines a strictly positive pricing kernel. We can rewrite the conditional

distributions as

fPt,t+1 = N(K̂P
P0,t + [K̂P

PP,t, K̂
P
PH,t]Zt,ΩPP,t) = N(µ̂Pt ,ΩPP,t),

fQt,t+1 = N(KQ
0 +KQ

1 Pt,ΣPP) = N(µQt ,ΣPP),

where (K̂P
P0,t, [K̂

P
PP,t, K̂

P
PH,t]) denote the posterior means of the latent parameters states, and

ΩPP,t the upper left 3× 3 entries of the conditional covariance matrix Ωt given in equation

(48). We can reduce this expression as follows (we use the notation ct to terms that are Ft
measurable but not of direct interest):

logMt,t+1 + rt = ct +
1

2
(Pt+1 − µ̂Pt )′Ω−1

PP,t(Pt+1 − µ̂Pt )− 1

2
(Pt+1 − µQt )′Σ−1

PP(Pt+1 − µQt )

= c′t −
(

Ω−1
PP,tµ̂

P
t − Σ−1

PPµ
Q
t

)′
Pt+1 +

1

2
P ′t+1(Ω−1

PP,t − Σ−1
PP)Pt+1

= c′′t − Λ′PtΓ
−1
t εPt+1 +

1

2
(εPt+1)′

(
I − Γ−1

t

)
εPt+1,

where

ΛPt = Ω
−1/2
PP,t(µ̂

P
t − µ

Q
t )

Γt = Ω
−1/2
PP,tΣPP(Ω

−1/2
PP,t)

′

c′′t = −1

2
log |Γt| −

1

2
Λ′PtΓ

−1
t ΛPt

Thus the stochastic discount factor resembles a stochastic discount factor under full information,

though with the parameters determining the market price of risks replaced by their posterior

means, and with an additional stochastic convexity term and matrix Γt representing the

change of conditional covariance matrix from P to Q.

To show that ΛPt is naturally interpreted as the market prices of risk in our learning

setting, consider an asset with log total-return spanned by the factors Pt: rat = α+ β′Pt and

satisfying Et
[
er
a
t +1Mt,t+1

]
= 1. Using the fact that E[eθ

′ε+ 1
2
ε′(I−Γ−1)ε] = e

1
2
θ′Γθ+ 1

2
log |Γ|, for

ε ∼ N(0, I), the left-hand side of the last expression can be rewritten as

exp{α+ β′µ̂Pt − rt + c′′t +
1

2
(β′Ω

1/2
t − Λ′PtΓ

−1
t )Γt(β

′Ω
1/2
t − Λ′PtΓ

−1
t )′ +

1

2
log |Γt|}

= exp{Et[rat+1]− rt +
1

2
β′Ωtβ − β′Ω1/2

t ΛPt}.
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This leads to

Et[rat+1]− rt +
1

2
V[rat+1] = β′Ω

1/2
t ΛPt;

the expected log excess return equals the quantity of risk times the market price of risk (after

adjusting for a convexity term).

E Selecting the Constant Gain Coefficient γ

Figure 12 shows RMSEs, based on the benchmark learning rule `LCG(P), for the first principal

component of US Treasury yields over the sample from January 1995 through December 2014.

The minimal RMSE for one-year-ahead forecasts (Panel (b)) is achieved for γ = 0.99. The

result is similar when for the one-quarter-ahead forecasts (Panel (a)).
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Figure 12: RMSE for one-quarter ahead and one-year ahead forecasts of PC1 of bond yields,
over the sample from January 1995 through December 2014. The RMSEs are reported for
different values of the constant gains coefficient γ.

This finding led us to wonder whether RA would find it optimal (from the perspective

of accurate forecasting) to adjust her constant-gain parameter γ over time. Intuitively, a

real-time learner might lower γ (give more weight to recent data) when recent forecast errors

are large (i.e., when there is strong evidence for a structural change). To ascertain whether

RA’s forecasts are more accurate with a state-dependent γ, we estimated the learning model

on an equally spaced grid of down-weight parameters {0.95, 0.955, ..., 0.995, 1}. The three-

and twelve-month ahead forecasts for each value of γ in the grid are recorded for each month

from January 1995 through December 2014. Using a look-back period of ten years we select

the “optimal” γ to minimize the RMSE of the first PC. For example, in January 1995 we

chose γ to minimize the out-of-sample RMSE between January 1985 (post training period)

and January 1995 (using forecasts made between January 1985 and January 1995). We then
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step forward one month at a time, fixing the ten-year look-back window, and repeat this

exercise43. Figure 13 shows the evolution of the dynamically updated γ parameters (γt) over

the sample from January 1995 through December 2014. For one-year-ahead forecasts, the

constant gains coefficient has a value of 0.99 for most of the sample (Panel (b)), and γt always

remains between 0.98 and 1. The estimated γt is more volatile for one-quarter-ahead forecasts

(Panel (a)), though γt takes values close to 0.99 for most of the sample.
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Figure 13: Real-time varying constant-gain parameters γ that minimize one quarter and one
year ahead RMSE’s of the first PC over the previous 10 years.

F Constraints on Λt for Rules `CG(P) and `CG(P , H)

We use the training sample to reduce the dimension of ΘP. For models evaluated out of

sample between January 1995 and March 2011, the training sample consists of the prior

10 years from January 1985 through December 1994. Our dimension reduction strategy

is based on restricting the physical measure towards the risk neutral. First we estimate a

model without restrictions imposed, and then we inspect the statistic significance of each

of the parameters in PmQt =
( K̂P
P0,t−K̂

Q
P0 K̂

P
PP,t−K̂

Q
PP K̂P

PH,t

K̂P
H0,t K̂P

HP,t K̂P
HH,t

)
. If the p-value, induced by the

posterior variance, at the end of the training sample is above 0.1, the corresponding coefficient

in KP
Z,t is concentrated out such that the corresponding entry in PmQt is zero. There are

only two exceptions to this rule. First, we deem that the coefficient of the lagged second

principal component in the second principal component equation plays an important role

in capturing the persistence of the second PC. Thus, we leave it unrestricted even when

the p-value is above 0.1. Second, we choose to restrict the market price of risk of the third

principal component to be equal to zero. This is in line with what is found by Joslin, Priebsch,

43This is in the spirit of the adaptive step-size algorithm proposed by Kostyshyna (2012) that draws upon
the engineering literature to adjust the gain parameter based on past forecast errors.
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and Singleton (2014), and consistent with the idea that the third principal component is a

spread portfolio that hedges away US Treasury bonds risks. In the data, we find that most of

the coefficients in the equation of the third principal component are not significant, with the

exception of the coefficient for the second principal component, which is borderline significant

with 0.9 confidence. Table 9 displays the restrictions imposed on the autoregressive feedback

matrix for rule `CG(P, H). Similarly, Table 10 reports the restrictions for rule `CG(P).

Λ0t Λ1t

PC1 PC2 PC3 ID(y2y) ID(y7y)

PC1 * * * 0 * *
PC2 * 0 * * 0 0
PC3 0 0 0 0 0 0
ID(y2y) 0 * * * * *
ID(y7y) 0 * 0 0 0 *

Table 9: Restrictions applied in rule `CG(P, H) to the parameters in PmQt.

const PC1 PC2 PC3

PC1 * * * 0
PC2 * 0 * *
PC3 0 0 0 0

Table 10: Restrictions applied in rule `CG(P) to the parameters in PmQt.

G Stochastic Volatility Model

Suppose that there exist a 3-dimensional state-variable, consisting of a univariate volatility

factor Vt, and 2 conditionally Gaussian factors Xt. Following our specification of the Gaussian

models with learning, we assume that the parameters governing the risk neutral measure are

known and constant. Joslin and Le (2014) show that an econometrically exactly identified

specification is given by

Vt+1|Vt ∼ CAR(ρQ, cQ, vQ),

Xt+1 = KQ
XV Vt + J(λQ)Xt +

√
Σ0 + Σ1Vt · εQt ,

rt = rQ∞ + ρV Vt + 1′Xt,
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where CAR is short for the compound autoregressive gamma process. The CAR process has

a conditional Laplace transform that is exponentially affine and first and second moments

given by

logEQ(euVt+1 |Vt) = −vQ log(1− ucQ) +
ρQu

1− ucQ
Vt,

EQ
t (Vt+1|Vt) = vQcQ + ρQVt,

VQ
t (Vt+1|Vt) = vQ

2
cQ + 2ρQVt.

The innovation to the non-volatility factors, εQt+1, is assumed to be normally distributed

and independent of Vt+1. It follows that zero coupon bond prices are exponentially affine,

Dn
t = eAn+Bn,V Vt+Bn,XXt , with loadings that satisfy the recursions

An+1 = An +
1

2
B′n,XΣ0Bn,X − vQ log

(
1− cQBn,V

)
− rQ∞,

Bn+1,X = J(λQ)′Bn,X − 1,

Bn+1,V = B′n,XKXV +
1

2
B′n,XΣ1Bn,X +

ρQBn,V
1− cQBn,V

− ρV .

Under the physical measure we assume that parameters that govern the dynamics of the

volatility factor are known and constant, while the parameters that govern the conditional

Gaussian factors are drifting and unknown

Vt+1|Vt ∼ CAR(ρP, cP, vP), (49)

Xt+1 = KP
X0,t +KP

XV,tVt +KP
XX,tXt +

√
Σ0X + Σ1XVt · εPt . (50)

As yields are affine in the state-variables,

yt = A(ΘQ,Σ0X ,Σ1X) +BV (ΘQ,Σ0X ,Σ1X)Vt +BX(λQ)Xt,

the principal components P are also affine in the state, since Pt = Wyt. This in turn implies

that Vt can be written as an affine function of ft:

Vt = α(ΘQ,Σ0X ,Σ1X) + β(ΘQ,Σ0X ,Σ1X)′Pt.

Joslin and Le (2014) show that we can rewrite and reparameterize equation (50) with

P2:3
t+1 −W 2:3BV Vt+1 = K̃P

P0,t + K̃P
PV,tVt + K̃P

PP,tP2:3
t +

√
Σ̃0P + Σ̃1PVt · εPt , (51)
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where the superscripts 2 : 3 refer to the second and third PCs, and the tilde is used to

indicate that these are parameters governing the dynamics of (Vt, (P2:3
t )′)′ (and not Pt).

Therefore, the model’s parameters can be decomposed into constant and known Q-parameters

(rQ∞, ρV , ρ
Q, cQ, vQ,KQ

XV , λ
Q), constant and known covariance matrices (Σ̃P0, Σ̃1P), constant

and known P-parameters (ρP, cP, vP), and unknown drifting P parameters (K̃P
P0,t, K̃

P
PV,t, K̃

P
PP,t).

We impose that cP = cQ and vP = vQ. These two conditions guarantee diffusion invariance of

Vt, and that the market prices of risks are non-exploding in the continuous time limit (see

Joslin and Le (2014)). From equations (49) - (51) it is seen that the conditional first and

second moments of the principal principal components are given by

EP
t (Pt+1) = KP

0,t +KP
1,tPt (52)

VP
t (Pt+1) = ΣP

0 + ΣP
1Pt (53)

where (KP
0,t,K

P
1,t,Σ

P
0 ,Σ

P
1) are known functions of (ΘQ, Σ̃P0, Σ̃1P ,Θ

P
t ) induced by rotating

(Vt, (P2:3
t )′)′ to Pt. Similarly to what done for the Gaussian learning model, we impose

restrictions on [KP
0,t,K

P
1,t] based on a training sample. These restrictions can be written as

vec
(

[K̃P
P0,t, K̃

P
PV,t, K̃

P
PP,t]

)
= Rψt + q, where ψ evolves according to a random walk

ψt = ψt−1 +Q
1/2
t−1ηt.

A set of sufficient conditions that guarantees that the innovation co-variance matrix of ψt is

proportional to the posterior co-variance matrix will ensure that the posterior means of ψ is

given by a constant gain estimator. The proof is similar to the derivations discussed in the

paper for the Gaussian learning model.

H Robustness to Time-Varying Volatility

A less constrained Bayesian (relative to RA) would formally build updating of ΣPP into

her learning rule. A priori, we would not expect this generalization of our learning rules to

materially affect RA’s conditional forecasts of bond yields, our primary focus for modeling risk

premiums. Updating of ΣPP would only change the posterior conditional means indirectly

through interactions with ΘQ, passed onto the P-feedback parameters by the restrictions on

the market price of risk. In our current setting RA keeps the Q parameters (kQ∞, λ
Q) nearly

constant. Therefore, it seems unlikely that formally introducing learning about ΣPP would

lead to large changes in the inferred posterior conditional P-means of bond yields.

To provide further reassurance on this front, we proceed to investigate learning within a
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setting of stochastic volatility. Suppose there are three risk factors consisting of a univariate

volatility factor Vt and a bivariate Xt that is Gaussian conditional on Vt. We adopt the

following normalized just-identified representation of the state under Q:

Vt+1|Vt ∼ CAR(ρQ, cQ, vQ), (54)

Xt+1 = KQ
V Vt + diag(λQ)Xt +

√
Σ0X + Σ1XVt ε

Q
t , (55)

rt = rQ∞ + ρV Vt + 1′Xt, (56)

where CAR denotes a compound autoregressive gamma process (Gourieroux and Jasiak

(2006)) and ΘQ ≡ (rQ∞, ρV , ρ
Q, cQ, vQ,KQ

V , λ
Q). As before, we assume that RA treats ΘQ as

constant and known, which implies that yields are given by

yt = A(ΘQ,Σ0X ,Σ1X) +BV (ΘQ,Σ1X)Vt +BX(ΘQ)Xt,

and the principal components are affine in (Vt, Xt) (see Appendix G for details). The market

prices of risk are assumed to be such that, under P, the state follows the process

Vt+1|Vt ∼ CAR(ρP, cP, vP), (57)

Xt+1 = KP
0t +KP

V tVt +KP
XtXt +

√
Σ0X + Σ1XVt ε

P
t+1, (58)

where εPt+1 is independent of Vt+1 and we let ΘP
t = (ρP, cP, vP,KP

0t,K
P
V t,K

P
Xt). RA presumes

that the volatility parameters (ρQ, cQ, vQ,Σ0X ,Σ1X) are constant, while those governing

the conditional means of Xt are unknown and drifting. In Appendix G we show that the

conditional first moments of the principal components are given by

EQ
t (Pt+1) = KQ

0P +KQ
1PPt and EP

t (Pt+1) = KP
0P,t +KP

1P,tPt,

where (KQ
0P ,K

Q
1P ,K

P
0P,t,K

P
1P,t) are known functions of (ΘQ,ΣX0,Σ1X ,Θ

P
t ) from the rotation

of (Vt, X
′
t)
′ to Pt. As before, a subset of the parameters in [KP

0Pt,K
P
1Pt] is constrained based

on the training sample.

Figure 14 plots the eigenvalues of the feedback matrices KQ
1P and KP

1P,t from the perspective

of RA’s real-time learning rule in the presence of Vt and conditioning only on the history of the

PCs. The eigenvalues of KQ
1P are (ρQ, λQ) and the eigenvalues of KP

1P,t are (ρP, eig(KP
Xt)).

44

Relaxing the assumption of constant conditional volatility does not alter our prior finding

that the Q eigenvalues are nearly constant over the entire sample period. The variation in the

44The feedback matrices in the conditional first moments of Pt and (Vt, X
′
t)
′ will have equal eigenvalues, as

Pt is an affine function of (Vt, X
′
t)
′.
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Figure 14: Estimates from model `1,3CG(P) of the eigenvalues of the feedback matrix KQ
1P

(KP
1P,t). The eigenvalues of KQ

1P are (ρQ, λQ) and the eigenvalues of KP
1P,t are (ρP, eig(KP

Xt)).

eigenvalues of KP
1P,t reflects the substantial variation in the market prices of risk.

Figure 15 offers an interesting perspective on the degree to which the learning rule `LCG(P)

(that presumes constant ΣPP) captures the swings in the conditional covariance matrix

that would be perceived by an agent learning in the presence of stochastic volatility. On

the diagonal are the estimated conditional standard deviations from models both with and

without stochastic volatility. Rule `LCG(P) captures the overall evolution of the conditional

standard deviations, but fails to pick up the huge increment in volatilities during the Fed

experiment. Perceptions about volatility under `LCG(P) also decay relatively slowly during the

great moderation. The constant conditional correlations are updated by `LCG(P) in a manner

very similar to the learning rule for the stochastic volatility model.
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Figure 15: Summary of ΣPP . Conditional standard deviations (main diagonal elements)
and correlations (off-diagonal elements) estimates from learning models with (blue line) and
without (red line) stochastic volatility. The estimates at date t are based on the historical
data up to observation t, over the period July, 1975 to March, 2011.
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